Vargatef 100 mg and 150 mg soft capsules

Summary of Product Characteristics Updated 31-Aug-2017 | Boehringer Ingelheim Limited

This medicinal product is subject to additional monitoring. This will allow quick identification of new safety information. Healthcare professionals are asked to report any suspected adverse reactions. See section 4.8 for how to report adverse reactions.

1. Name of the medicinal product
 Vargatef 100 mg soft capsules
 Vargatef 150 mg soft capsules

2. Qualitative and quantitative composition
 Each capsule contains 100 mg nintedanib (as esilate).
 Each capsule contains 150 mg nintedanib (as esilate).
 Excipients with known effect:
 Each capsule contains 1.2 mg of soya lecithin.
 Each capsule contains 1.8 mg of soya lecithin.
 For the full list of excipients, see section 6.1.

3. Pharmaceutical form
 Soft capsule (capsule)
 Peach-coloured, opaque, oblong soft-gelatin capsules imprinted on one side in black with the Boehringer Ingelheim company symbol and “100”.
 Brown-coloured, opaque, oblong soft-gelatin capsule imprinted on one side in black with the Boehringer Ingelheim company symbol and “150”.

4. Clinical particulars

4.1 Therapeutic indications
 Vargatef is indicated in combination with docetaxel for the treatment of adult patients with locally advanced, metastatic or locally recurrent non-small cell lung cancer (NSCLC) of adenocarcinoma tumour histology after first-line chemotherapy.

4.2 Posology and method of administration
 Treatment with Vargatef should be initiated and supervised by a physician experienced in the use of anticancer therapies.
 Posology
 The recommended dose of nintedanib is 200 mg twice daily administered approximately 12 hours apart, on days 2 to 21 of a standard 21 day docetaxel treatment cycle.
 Vargatef must not be taken on the same day of docetaxel chemotherapy administration (= day 1). If a dose of nintedanib is missed, administration should resume at the next scheduled time at the recommended dose. The individual daily doses of nintedanib should not be increased beyond the recommended dose to make up for missed doses. The recommended maximum daily dose of 400 mg should not be exceeded.
 Patients may continue therapy with nintedanib after discontinuation of docetaxel for as long as clinical benefit is observed or until unacceptable toxicity occurs.
 For posology, methods of administration, and dose modifications of docetaxel, please refer to the corresponding product information for docetaxel.
 Dose adjustments
 As initial measure for the management of adverse reactions (see Tables 1 and 2) treatment with nintedanib should be temporarily interrupted until the specific adverse reaction has resolved to levels that allow continuation of therapy (to grade 1 or baseline). Nintedanib treatment may be resumed at a reduced dose. Dose adjustments in 100 mg steps per day (i.e. a 50 mg reduction per dosing) based on individual safety and tolerability are recommended as described in Table 1 and Table 2.

In case of further persistence of the adverse reaction(s), i.e. if a patient does not tolerate 100 mg twice daily, treatment with Vargatef should be permanently discontinued. In case of specific elevations of aspartate aminotransferase (AST)/alanine aminotransferase (ALT) values to > 3 x upper limit normal (ULN) in conjunction with an increase of total bilirubin to ≥ 2 x ULN and alkaline phosphatase (ALKP) < 2 x ULN (see Table 2) treatment with Vargatef should be interrupted. Unless there is an alternative cause established, Vargatef should be permanently discontinued (see also section 4.4).

Table 1: Recommended dose adjustments for Vargatef (nintedanib) in case of diarrhoea, vomiting and other non-haematological or haematological adverse reactions

<table>
<thead>
<tr>
<th>CTCAE* Adverse reaction</th>
<th>Dose adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhoea ≥ grade 2 for more than 7 consecutive days despite anti-diarrhoeal treatment</td>
<td>After treatment interruption and recovery to grade 1 or baseline, dose reduction from 200 mg twice daily to 150 mg twice daily and - if a 2nd dose reduction is considered necessary - from 150 mg twice daily to 100 mg twice daily.</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>Diarrhoea ≥ grade 3 despite anti-diarrhoeal treatment</td>
<td></td>
</tr>
<tr>
<td>Vomiting ≥ grade 2 AND/OR Nausea ≥ grade 3 despite anti-emetic treatment</td>
<td></td>
</tr>
<tr>
<td>Other non-haematological or haematological adverse reaction of ≥ grade 3</td>
<td></td>
</tr>
</tbody>
</table>

* CTCAE: Common Terminology Criteria for Adverse Events

Table 2: Recommended dose adjustments for Vargatef (nintedanib) in case of AST and/or ALT and bilirubin elevations

<table>
<thead>
<tr>
<th>AST / ALT and bilirubin elevations</th>
<th>Dose adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation of AST and/or ALT values to > 2.5 x ULN in conjunction with total bilirubin elevation to ≥ 1.5 x ULN</td>
<td>After treatment interruption and recovery of transaminase-values to ≤ 2.5 x ULN in conjunction with bilirubin to normal, dose reduction from 200 mg twice daily to 150 mg twice daily and - if a 2nd dose reduction is considered necessary - from 150 mg twice daily to 100 mg twice daily.</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>Elevation of AST and/or ALT values to > 5 x ULN</td>
<td></td>
</tr>
<tr>
<td>Elevation of AST and/or ALT values to > 3 x ULN in conjunction with an increase of total bilirubin to ≥ 2 x ULN and ALKP < 2 x ULN</td>
<td>Unless there is an alternative cause established, Vargatef should be permanently discontinued</td>
</tr>
</tbody>
</table>

AST: Aspartate aminotransferase; ALT: Alanine aminotransferase
ALKP: Alkaline phosphatase; ULN: Upper limit normal

Special populations

Paediatric population

The safety and efficacy of Vargatef in children aged 0-18 years have not been established. No data are available.

Elderly patients (≥ 65 years)

No overall differences in safety and efficacy were observed for elderly patients.

In the pivotal study 1199.13, 85 patients (12.9 % of the patients with adenocarcinoma histology) were ≥ 70 years of age (median age: 72 years, range: 70 - 80 years) (see section 5.1). No adjustment of the initial dosing is required on the basis of a patient's age (see section 5.2).

Race and body weight

Based on population pharmacokinetic (PK) analyses, no a priori dose adjustments of Vargatef are necessary (see section 5.2). Safety data for Black and African American patients are limited.

Renal impairment

Less than 1% of a single dose of nintedanib is excreted via the kidney (see section 5.2). Adjustment of the starting dose in patients with mild to moderate renal impairment is not required. The safety, efficacy, and pharmacokinetics of nintedanib have not been studied in patients with severe renal impairment (<30 ml/min creatinine clearance).

Hepatic impairment

Nintedanib is predominantly eliminated via biliary/faecal excretion (>90%). Exposure increased in patients with hepatic impairment (Child Pugh A, Child Pugh B; see section 5.2). No adjustment of the starting dose is needed for patients with mild hepatic impairment (Child Pugh A) based on clinical data. Limited safety data available from 9 patients with moderate hepatic impairment (Child Pugh B) are insufficient to characterize this population. The safety, efficacy and pharmacokinetics of nintedanib have not been investigated in patients with severe hepatic impairment (Child Pugh C). Treatment of patients with moderate (Child Pugh B) and severe (Child Pugh C) hepatic impairment with Vargatef is not recommended (see sections 4.4 and 5.2).

Method of administration

Vargatef capsules must be taken orally, preferably with food, swallowed whole with water, and must not be chewed or crushed.

4.3 Contraindications

Hypersensitivity to nintedanib, peanut or soya, or to any of the excipients listed in section 6.1.

4.4 Special warnings and precautions for use

Gastrointestinal disorders

Diarrhoea was the most frequently reported gastro-intestinal adverse reaction and appeared in close temporal relationship with the administration of docetaxel (see section 4.8). In the clinical trial LUME-Lung 1 (see section 5.1), the majority of patients had mild to moderate diarrhoea. Serious cases of diarrhoea leading to dehydration and electrolyte disturbances have been reported with nintedanib in the post-marketing period. Diarrhoea should be treated at first signs with adequate hydration and anti-diarrhoeal medicinal products, for example loperamide, and may require interruption, dose reduction or discontinuation of therapy with Vargatef (see section 4.2).

Nausea and vomiting, mostly of mild to moderate severity, were frequently reported gastrointestinal adverse reactions (see section 4.8). Interruption, dose reduction or discontinuation of therapy with Vargatef (see section 4.2) may be required despite appropriate supportive care. Supportive care for nausea and vomiting may include medicinal products with anti-emetic properties, e.g. glucocorticoids, anti-histamines or 5-HT3 receptor antagonists and adequate hydration.

In the event of dehydration, administration of electrolytes and fluids is required. Plasma levels of electrolytes should be monitored, if relevant gastrointestinal adverse events occur. Interruption, dose reduction or discontinuation of therapy with Vargatef may be required (see section 4.2).

Neutropenia and sepsis

A higher frequency of neutropenia of CTCAE grade ≥ 3 was observed in patients treated with Vargatef in combination with docetaxel as compared to treatment with docetaxel alone. Subsequent complications such as sepsis or febrile neutropenia have been observed.

Blood counts should be monitored during therapy, in particular during the combination treatment with docetaxel. Frequent monitoring of complete blood counts should be performed at the beginning of each treatment cycle and around the nadir for patients receiving treatment with nintedanib in combination with docetaxel, and as clinically indicated after the administration of the last combination cycle.

Hepatic function

Based on increased exposure, the risk for adverse events may be increased in patients with mild hepatic impairment (Child Pugh A; see sections 4.2 and 5.2). Limited safety data are available in 9 patients with hepatocellular carcinoma and moderate hepatic impairment classified as Child Pugh B. Although no unexpected safety findings were reported in these patients, the data are insufficient to support a recommendation for treatment of patients with moderate hepatic impairment. The efficacy of nintedanib has not been investigated in patients with moderate hepatic impairment (Child Pugh B). The safety, efficacy and pharmacokinetics of nintedanib have not been studied in patients with severe hepatic impairment (Child Pugh C). Treatment with Vargatef is not recommended in patients with moderate or severe hepatic impairment (see section 4.2).

Administration of nintedanib was associated with an elevation of liver enzymes (ALT, AST, ALKP, gamma-glutamyltransferase) or bilirubin, with a potentially higher risk for female patients. These increases were reversible in the majority of cases.

Transaminase, ALKP and bilirubin levels should be investigated before the initiation of the combination treatment with Vargatef plus docetaxel. The values should be monitored as clinically indicated or periodically during treatment, i.e. in the...
combination phase with docetaxel at the beginning of each treatment cycle and monthly in case Vargatef is continued as monotherapy after discontinuation of docetaxel.

If relevant liver enzyme elevations are measured, interruption, dose reduction or discontinuation of the therapy with Vargatef may be required (see section 4.2). Alternative causes of the liver enzyme elevations should be investigated and respective action should be taken as necessary. In case of specific changes in liver values (AST/ALT > 3 x ULN; total bilirubin ≥ 2 x ULN and ALKP < 2 x ULN) treatment with Vargatef should be interrupted. Unless there is an alternative cause established, Vargatef should be permanently discontinued (see section 4.2).

Haemorrhage

VEGFR inhibition might be associated with an increased risk of bleeding. In the clinical trial (LUME-Lung 1; see section 5.1) with Vargatef, the frequency of bleeding in both treatment arms was comparable (see section 4.8). Mild to moderate epistaxis represented the most frequent bleeding event. The majority of fatal bleeding events were tumour-associated. There were no imbalances of respiratory or fatal bleedings and no intracerebral bleeding was reported.

Patients with recent pulmonary bleeding (> 2.5 ml of red blood) as well as patients with centrally located tumours with radiographic evidence of local invasion of major blood vessels or radiographic evidence of cavitory or necrotic tumours have been excluded from clinical trials. Therefore, it is not recommended to treat these patients with Vargatef.

Non-serious and serious bleeding events, some of which were fatal, have been reported in the post-marketing period, including patients with or without anticoagulant therapy or other drugs that could cause bleeding (for clinical trials' data, see also 'Therapeutic anticoagulation' below). In case of bleeding, dose adjustment, interruption or discontinuation should be considered based on clinical judgement (see section 4.2). Post-marketing bleeding events include but are not limited to gastrointestinal, respiratory and central nervous system organs, with the most frequent being respiratory.

Therapeutic anticoagulation

There are no data available from clinical trials for patients with inherited predisposition to bleeding or for patients receiving a full dose of anticoagulative treatment prior to start of treatment with Vargatef (for post-marketing experience, see 'Haemorrhage' above). In patients on chronic low dose therapy with low molecular weight heparins or acetylsalicylic acid, no increased frequency of bleeding was observed. Patients who developed thromboembolic events during treatment and who required anticoagulant treatment were allowed to continue Vargatef and did not show an increased frequency of bleeding events. Patients taking concomitant anticoagulation, such as warfarin or phenprocoumon should be monitored regularly for changes in prothrombin time, international normalized ratio (INR), and clinical bleeding episodes.

Brain metastasis

Stable brain metastasis

No increased frequency of cerebral bleeding in patients with adequately pre-treated brain metastases which were stable for ≥ 4 weeks before start of treatment with Vargatef was observed. However, such patients should be closely monitored for signs and symptoms of cerebral bleeding.

Active brain metastasis

Patients with active brain metastasis were excluded from clinical trials and are not recommended for treatment with Vargatef.

Venous thromboembolism

Patients treated with Vargatef have an increased risk of venous thromboembolism including deep vein thrombosis. Patients should be closely monitored for thromboembolic events. Vargatef should be discontinued in patients with life-threatening venous thromboembolic reactions.

Arterial thromboembolic events

The frequency of arterial thromboembolic events was comparable between the two treatment arms in the phase 3 study 1199.13 (LUME-Lung 1). Patients with a recent history of myocardial infarction or stroke were excluded from this study. However, an increased frequency of arterial thromboembolic events was observed in patients with idiopathic pulmonary fibrosis (IPF) when treated with nintedanib monotherapy. Use caution when treating patients with a higher cardiovascular risk including known coronary artery disease. Treatment interruption should be considered in patients who develop signs or symptoms of acute myocardial ischaemia.

Gastrointestinal perforations

The frequency of gastrointestinal perforation was comparable between the treatment arms in the clinical study. However, based on the mechanism of action patients treated with Vargatef may have an increased risk of gastrointestinal perforations. Particular caution should be exercised when treating patients with previous abdominal surgery or a recent history of a hollow organ perforation. Vargatef should therefore only be initiated at least 4 weeks after major surgery. Therapy with Vargatef should be permanently discontinued in patients who develop gastrointestinal perforation.

Wound healing complication
Based on the mechanism of action nintedanib may impair wound healing. No increased frequency of impaired wound healing was observed in the LUME-Lung 1 trial. No dedicated studies investigating the effect of nintedanib on wound healing were performed. Treatment with Vargatef should therefore only be initiated or - in case of perioperative interruption - resumed based on clinical judgement of adequate wound healing.

Effect on QT interval

No QT prolongation was observed for nintedanib in the clinical trial program (see section 5.1). As several other tyrosine kinase inhibitors are known to exert an effect on QT, caution should be exercised when administering nintedanib in patients who may develop QTc prolongation.

Allergic reaction

Dietary soya-products are known to cause allergic reactions including severe anaphylaxis in persons with soya allergy. Patients with known allergy to peanut protein carry an enhanced risk for severe reactions to soya preparations.

Special populations

Nintedanib exposure increased linearly with patient age, was inversely correlated to weight, and was generally higher in patients of Asian race. This may result in a higher risk of developing liver enzyme elevations. Close monitoring is recommended in patients with several of these risk factors.

In study 1199.13 (LUME-Lung 1), there was a higher frequency of SAEs in patients treated with nintedanib plus docetaxel with a body weight of less than 50 kg compared to patients with a weight ≥ 50 kg; however the number of patients with a body weight of less than 50 kg was small. Therefore close monitoring is recommended in patients weighing < 50 kg.

4.5 Interaction with other medicinal products and other forms of interaction

Interaction studies have only been performed in adults.

P-glycoprotein (P-gp)

Nintedanib is a substrate of P-gp (see section 5.2). Co-administration with the potent P-gp inhibitor ketoconazole increased exposure to nintedanib 1.61-fold based on AUC and 1.83-fold based on Cmax in a dedicated drug-drug interaction study. In a drug-drug interaction study with the potent P-gp inducer rifampicin, exposure to nintedanib decreased to 50.3 % based on AUC and to 60.3 % based on Cmax upon co-administration with rifampicin compared to administration of nintedanib alone. If co-administered with nintedanib, potent P-gp inhibitors (e.g. ketoconazole or erythromycin) may increase exposure to nintedanib. In such cases, patients should be monitored closely for tolerability of nintedanib. Management of side effects may require interruption, dose reduction, or discontinuation of therapy with Vargatef (see section 4.2).

Potent P-gp inducers (e.g. rifampicin, carbamazepine, phenytoin, and St. John’s Wort) may decrease exposure to nintedanib. Co-administration with nintedanib should be carefully considered.

Cytochrome (CYP)-enzymes

Only a minor extent of the biotransformation of nintedanib consisted of CYP pathways. Nintedanib and its metabolites, the free acid moiety BIBF 1202 and its glucuronide BIBF 1202 glucuronide, did not inhibit or induce CYP enzymes in preclinical studies (see section 5.2). The likelihood of drug-drug interactions with nintedanib based on CYP metabolism is therefore considered to be low.

Co-administration with other medicinal products

Co-administration of nintedanib with docetaxel (75 mg/m²) did not alter the pharmacokinetics of either medicinal product to a relevant extent.

The potential for interactions of nintedanib with hormonal contraceptives was not explored.

4.6 Fertility, pregnancy and lactation

Women of childbearing potential / Contraception

Nintedanib may cause foetal harm in humans (see section 5.3). Women of childbearing potential being treated with Vargatef should be advised to avoid becoming pregnant while receiving this treatment and to use adequate contraception during and at least 3 months after the last dose of Vargatef. Since the effect of nintedanib on the metabolism and efficacy of contraceptives has not been investigated, barrier methods should be applied as a second form of contraception, to avoid pregnancy.

Pregnancy
There is no information on the use of Vargatef in pregnant women, but pre-clinical studies in animals have shown reproductive toxicity of this active substance (see section 5.3). As nintedanib may cause foetal harm also in humans, it should not be used during pregnancy unless the clinical condition requires treatment. Pregnancy testing should be conducted at least prior to treatment with Vargatef.

Female patients should be advised to notify their doctor or pharmacist if they become pregnant during therapy with Vargatef.

If the patient becomes pregnant while receiving Vargatef, she should be apprised of the potential hazard to the foetus. Termination of the treatment with Vargatef should be considered.

Breast-feeding

There is no information on the excretion of nintedanib and its metabolites in human milk. Pre-clinical studies showed that small amounts of nintedanib and its metabolites (≤ 0.5 % of the administered dose) were secreted into milk of lactating rats. A risk to the new-borns/infants cannot be excluded. Breast-feeding should be discontinued during treatment with Vargatef.

Fertility

Based on preclinical investigations there is no evidence for impairment of male fertility (see section 5.3). There are no human or animal data on potential effects of nintedanib on female fertility available.

4.7 Effects on ability to drive and use machines

Vargatef has minor influence on the ability to drive and use machines. Patients should be advised to be cautious when driving or using machines during treatment with Vargatef.

4.8 Undesirable effects

Summary of the safety profile

The safety data provided in the sections below are based on the global, double-blind randomised pivotal phase 3 trial 1199.13 (LUME-Lung 1) comparing treatment with nintedanib plus docetaxel against placebo plus docetaxel in patients with locally advanced, or metastatic, or recurrent NSCLC after first-line chemotherapy. The most frequently reported adverse drug reactions (ADRs) specific for nintedanib were diarrhoea, increased liver enzyme values (ALT and AST) and vomiting. Table 3 provides a summary of the adverse reactions by System Organ Class (SOC). For the management of selected adverse reactions, see section 4.4. Information about selected adverse reactions observed from the LUME-Lung 1 trial are described below.

Tabulated list of adverse reactions

Table 3 summarizes the frequencies of adverse drug reactions that were reported in the pivotal study LUME-Lung 1 for patients with NSCLC of adenocarcinoma tumour histology (n = 320). The following terms are used to rank the ADRs by frequency: very common (≥ 1/10), common (≥ 1/100 to < 1/10), uncommon (≥ 1/1,000 to < 1/100), rare (≥ 1/10,000 to < 1/1,000), very rare (< 1/10,000), not known (cannot be estimated from the available data). Within each frequency grouping adverse reactions are presented in order of decreased seriousness.

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>Very common (≥ 1/10)</th>
<th>Common (≥ 1/100 < 1/10)</th>
<th>Uncommon (≥ 1/1,000 < 1/100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td></td>
<td>Febrile neutropenia,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abscesses,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sepsis</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (includes febrile neutropenia)</td>
<td>Thrombocytopenia</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Decreased appetite,</td>
<td></td>
<td>Dehydration</td>
</tr>
<tr>
<td></td>
<td>Electrolyte imbalance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral neuropathy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Bleeding1) (see section 4.4)</td>
<td>Venous thromboembolism,</td>
<td></td>
</tr>
</tbody>
</table>

1) based on clinical judgement and laboratory tests.

Description of selected adverse reactions

Diarrhoea

Diarrhoea occurred in 43.4 % (≥ grade 3: 6.3 %) of adenocarcinoma patients in the nintedanib arm. The majority of adverse reactions appeared in close temporal relationship with the administration of docetaxel. Most patients recovered from diarrhoea following treatment interruption, anti-diarrhoeal therapy and nintedanib dose reduction.

For recommended measures and dosing adjustments in case of diarrhoea, see sections 4.4 and 4.2, respectively.

Liver enzyme elevations and hyperbilirubinaemia

Liver-related adverse reactions occurred in 42.8 % of nintedanib-treated patients. Approximately one third of these patients had liver-related adverse reactions of ≥ grade 3 severity. In patients with increased liver parameters, the use of the established stepwise dose reduction scheme was the appropriate measure and discontinuation of treatment was only necessary in 2.2 % of patients. In the majority of patients, elevations of liver parameters were reversible.

For information about special populations, recommended measures and dosing adjustments in case of liver enzyme and bilirubin elevations, see sections 4.4 and 4.2, respectively.

Neutropenia, febrile neutropenia and sepsis

Sepsis and febrile neutropenia have been reported as subsequent complications of neutropenia. The rates of sepsis (1.3 %) and febrile neutropenia (7.5 %) were increased under treatment with nintedanib as compared to the placebo arm. It is important that the patient's blood counts are monitored during therapy, in particular during the combination treatment with docetaxel (see section 4.4).

Bleeding

In the post-marketing period non-serious and serious bleeding events, some of which fatal, have been reported, including patients with or without anticoagulant therapy or other drugs that could cause bleeding. Post-marketing bleeding events include but are not limited to gastrointestinal, respiratory and central nervous system organs, with the most frequent being respiratory (see also section 4.4).

Perforation

As expected via its mechanism of action perforation might occur in patients treated with nintedanib. However, the frequency of patients with gastrointestinal perforation was low.

Skin and subcutaneous tissue disorders

- Mucositis (including stomatitis), Rash

Hypertension

- Perforation
 - Pancreatitis

Table: Selected adverse reactions

<table>
<thead>
<tr>
<th>Gastrointestinal disorders</th>
<th>Hypertension</th>
<th>Perforation¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhoea, Vomiting, Nausea, Abdominal pain</td>
<td>Facing the patient</td>
<td>Pancreatitis²)</td>
</tr>
</tbody>
</table>

¹) In clinical trials the frequency was not increased in patients treated with nintedanib plus docetaxel as compared to placebo plus docetaxel.

²) Events of pancreatitis have been reported in patients taking nintedanib for the treatment of IPF and NSCLC. The majority of these events were reported for patients in the IPF indication.
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via:

United Kingdom

Yellow Card Scheme

Website: www.mhra.gov.uk/yellowcard or search for MHRA Yellow Card in the Google Play or Apple App Store

Ireland

HPRA Pharmacovigilance

Earlsfort Terrace

IRL – Dublin 2

Tel: +353 1 6764971

Fax: +353 1 6762517

Website: www.hpra.ie

e-mail: medsafety@hpra.ie

Malta

ADR Reporting

Website: www.medicinesauthority.gov.mt/adrportal

4.9 Overdose

There is no specific antidote or treatment for nintedanib overdose. The highest single dose of nintedanib administered in phase I studies was 450 mg once daily. In addition, 2 patients had an overdose of maximum 600 mg twice daily (b.i.d.) up to eight days. Observed adverse events were consistent with the known safety profile of nintedanib, i.e. increased liver enzymes and gastrointestinal symptoms. Both patients recovered from these adverse reactions. In case of overdose, treatment should be interrupted and general supportive measures initiated as appropriate.

5. Pharmacological properties

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Antineoplastic agents, protein kinase inhibitors.

ATC code: L01XE31

Mechanism of action

Nintedanib is a triple angiokinase inhibitor blocking vascular endothelial growth factor receptors (VEGFR 1-3), platelet-derived growth factor receptors (PDGFR α and β) and fibroblast growth factor receptors (FGFR 1-3) kinase activity. Nintedanib binds competitively to the adenosine triphosphate (ATP) binding pocket of these receptors and blocks the intracellular signalling which is crucial for the proliferation and survival of endothelial as well as perivascular cells (pericytes and vascular smooth muscle cells). In addition Fms-like tyrosine-protein kinase (Flt)-3, lymphocyte-specific tyrosine-protein kinase (Lck) and proto-oncogene tyrosine-protein kinase Src (Src) are inhibited.

Pharmacodynamic effects

Tumour angiogenesis is an essential feature contributing to tumour growth, progression and metastasis formation and is predominantly triggered by the release of pro-angiogenic factors secreted by the tumour cell (i.e. VEGF and bFGF) to attract host endothelial as well as perivascular cells to facilitate oxygen and nutrient supply through the host vascular system. In preclinical disease models nintedanib, as single agent, effectively interfered with the formation and maintenance of the tumour vascular system resulting in tumour growth inhibition and tumour stasis. In particular, treatment of tumour xenografts with nintedanib led to a rapid reduction in tumour micro vessel density, pericytes vessel coverage and tumour perfusion.

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) measurements showed an anti-angiogenic effect of nintedanib in humans. It was not clearly dose dependent, but most responses were seen at doses of ≥ 200 mg. Logistic regression revealed a statistically significant association of the anti-angiogenic effect to nintedanib exposure. DCE-MRI effects were seen 24 - 48 h after the first intake of the medicinal product and were preserved or even increased after continuous treatment over several weeks. No correlation of the DCE-MRI response and subsequent clinically significant reduction in target lesion size was found, but DCE-MRI response was associated with disease stabilization.
Clinical efficacy and safety

Efficacy in the pivotal phase 3 trial LUME-Lung 1

The efficacy and safety of Vargatef was investigated in 1314 adult patients with locally advanced, metastatic or recurrent NSCLC after one prior line of chemotherapy. 'Locally recurrent' was defined as local re-occurrence of the tumour without metastases at study entry. The trial included 658 patients (50.1 %) with adenocarcinoma, 555 patients (42.2 %) with squamous cell carcinoma, and 101 patients (7.7 %) with other tumour histologies.

Patients were randomized (1:1) to receive nintedanib 200 mg orally twice daily in combination with 75 mg/m² of intravenous docetaxel every 21 days (n = 655) or placebo orally twice daily in combination with 75 mg/m² of docetaxel every 21 days (n = 659). Randomization was stratified according to Eastern Cooperative Oncology Group (ECOG) status (0 versus 1), bevacizumab pretreatment (yes versus no), brain metastasis (yes versus no) and tumour histology (squamous versus non-squamous tumour histology).

Patient characteristics were balanced between treatment arms within the overall population and within subgroups according to histology. In the overall population, 72.7 % of the patients were male. The majority of patients were non-Asian (81.6 %), the median age was 60.0 years, the baseline ECOG performance status was 0 (28.6 %) or 1 (71.3 %); one patient had a baseline ECOG performance status of 2. Five point eight percent (5.8 %) of the patients had stable brain metastasis at study entry and 3.8 % had prior bevacizumab treatment.

The disease stage was determined at the time of diagnosis using Union Internationale Contre le Cancer (UICC) / American Joint Committee on Cancer (AJCC) Edition 6 or Edition 7. In the overall population, 16.0 % of the patients had disease stage < IIIB/IV, 22.4 %, had disease stage IIIB and 61.6 % had disease stage IV. 9.2 % of the patients entered the study with locally recurrent disease stage as had been evaluated at baseline. For patients with tumour of adenocarcinoma histology, 15.8 % had disease stage < IIIB/IV, 15.2 %, had disease stage IIIB and 69.0 % had disease stage IV.

5.8 % of the adenocarcinoma patients entered the study with locally recurrent disease stage as had been evaluated at baseline.

The primary endpoint was progression-free survival (PFS) as assessed by an independent review committee (IRC) based on the intent-to-treat (ITT) population and tested by histology. Overall survival (OS) was the key secondary endpoint. Other efficacy outcomes included objective response, disease control, change in tumour size and health-related quality of life.

The addition of nintedanib to docetaxel led to a statistically significant reduction in the risk of progression or death by 21 % for the overall population (hazard ratio (HR) 0.79; 95% confidence interval (CI): 0.68 - 0.92; p = 0.0019) as determined by the Independent Review Committee. This result was confirmed in the follow-up PFS analysis (HR 0.85, 95% CI: 0.75 - 0.96; p = 0.0070) which included all events collected at the time of the final OS analysis. Overall survival analysis in the overall population did not reach statistical significance (HR 0.94; 95% CI: 0.83 - 1.05). Of note, pre-planned analyses according to histology showed statistically significant difference in OS between treatment arms in the adenocarcinoma population only (Table 4).

As shown in Table 4, the addition of nintedanib to docetaxel led to a statistically significant reduction in the risk of progression or death by 23 % for the adenocarcinoma population (HR 0.77; 95% CI: 0.62 - 0.96). In line with these observations, related study endpoints such as disease control and change in tumour size showed significant improvements.

Table 4: Efficacy results for study LUME-Lung 1 for patients with adenocarcinoma tumour histology

<table>
<thead>
<tr>
<th></th>
<th>Vargatef + Docetaxel</th>
<th>Placebo + Docetaxel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progression free survival (PFS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- primary analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients, n</td>
<td>277</td>
<td>285</td>
</tr>
<tr>
<td>Number of Deaths or Progressions, n (%)</td>
<td>152 (54.9)</td>
<td>180 (63.2)</td>
</tr>
<tr>
<td>Median PFS [months]</td>
<td>4.0</td>
<td>2.8</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.77 (0.62; 0.96)</td>
<td></td>
</tr>
<tr>
<td>Stratified Log-Rank Test p-value**</td>
<td>0.0193</td>
<td></td>
</tr>
<tr>
<td>Progression free survival (PFS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- follow-up analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients, n</td>
<td>322</td>
<td>336</td>
</tr>
<tr>
<td></td>
<td>Number of Deaths or Progressions, n (%)</td>
<td>255 (79.2)</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>Median PFS [months]</td>
<td></td>
<td>4.2</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td></td>
<td>0.84 (0.71; 1.00)</td>
</tr>
<tr>
<td>Stratified Log-Rank Test p-value**</td>
<td></td>
<td>0.0485</td>
</tr>
<tr>
<td>Disease control [%]</td>
<td></td>
<td>60.2</td>
</tr>
<tr>
<td>Odds ratio (95% CI)†</td>
<td></td>
<td>1.93 (1.42; 2.64)</td>
</tr>
<tr>
<td>p-value+</td>
<td></td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Objective response [%]</td>
<td></td>
<td>4.7</td>
</tr>
<tr>
<td>Odds ratio (95% CI)†</td>
<td></td>
<td>1.32 (0.61; 2.93)</td>
</tr>
<tr>
<td>p-value+</td>
<td></td>
<td>0.4770</td>
</tr>
<tr>
<td>Tumour shrinkage [%]</td>
<td></td>
<td>-7.76</td>
</tr>
<tr>
<td>p-value*</td>
<td></td>
<td>0.0002</td>
</tr>
</tbody>
</table>

Overall Survival (OS)*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>322</th>
<th>336</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients, n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Deaths, n (%)</td>
<td></td>
<td>259 (80.4)</td>
<td>276 (82.1)</td>
</tr>
<tr>
<td>Median OS [months]</td>
<td></td>
<td>12.6</td>
<td>10.3</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td></td>
<td>0.83 (0.70; 0.99)</td>
<td></td>
</tr>
<tr>
<td>Stratified Log-Rank Test p-value*</td>
<td></td>
<td>0.0359</td>
<td></td>
</tr>
</tbody>
</table>

* Primary PFS analysis performed when 713th PFS events had been observed based on IRC-assessment in the overall ITT population (332 events in adenocarcinoma patients).

** Stratified by baseline ECOG PS (0 versus 1), brain metastases at baseline (yes versus no) and prior treatment with bevacizumab (yes v versus no).

*** OS analysis and follow-up PFS-analysis performed when 1121 death cases had been observed in the overall ITT population (535 events in adenocarcinoma patients).

+ Odds ratio and p-value were obtained from a logistic regression model adjusted for baseline ECOG Performance Score (0 versus 1).

° Adjusted mean of best-% change from baseline and p-value generated from an ANOVA model adjusting for baseline ECOG PS (0 versus 1), brain metastases at baseline (yes versus no) and prior treatment with bevacizumab (yes versus no).

A statistically significant improvement in OS favouring treatment with nintedanib plus docetaxel was demonstrated in patients with adenocarcinoma with a 17 % reduction in the risk of death (HR 0.83, p = 0.0359) and a median OS improvement of 2.3 months (10.3 versus 12.6 months, Figure 1).

Figure 1: Kaplan-Meier curve for overall survival for patients with adenocarcinoma tumour histology by treatment group in trial LUME-Lung 1.

HR: hazard ratio; CI: confidence interval
A pre-specified evaluation was performed in the population of adenocarcinoma patients considered to have entered the study with a particularly poor treatment prognosis, namely, patients who progressed during or shortly after first-line therapy prior to study entry. This population included those adenocarcinoma patients identified at baseline as having progressed and entered the study less than 9 months since start of their first-line therapy. Treatment of these patients with nintedanib in combination with docetaxel reduced the risk of death by 25 %, compared with placebo plus docetaxel (HR 0.75; 95% CI: 0.60 - 0.92; p = 0.0073). Median OS improved by 3 months (nintedanib: 10.9 months; placebo: 7.9 months). In a post-hoc analysis in adenocarcinoma patients having progressed and entered the study ≥ 9 months since start of their first-line therapy the difference did not reach statistical significance (HR for OS: 0.89, 95% CI 0.66 - 1.19).

The proportion of adenocarcinoma patients with stage < IIIB/IV at diagnosis was small and balanced across treatment arms (placebo: 54 patients (16.1 %); nintedanib: 50 patients, (15.5 %)). The HR for these patients for PFS and OS was 1.24 (95% CI: 0.68, 2.28) and 1.09 (95% CI: 0.70, 1.70), respectively. However, the sample size was small, there was no significant interaction and the CI was wide and included the HR for OS of the overall adenocarcinoma population.

Quality of life

Treatment with nintedanib did not significantly change the time to deterioration of the pre-specified symptoms cough, dyspnoea and pain, but resulted in a significant deterioration in the diarrhoea symptom scale. Nevertheless, the overall treatment benefit of nintedanib was observed without adversely affecting self-reported quality of life.

Effect on QT interval

QT/QTc measurements were recorded and analysed from a dedicated study comparing nintedanib monotherapy against sunitinib monotherapy in patients with renal cell carcinoma. In this study single oral doses of 200 mg nintedanib as well as multiple oral doses of 200 mg nintedanib administered twice daily for 15 days did not prolong the QTcF interval. However, no thorough QT-trial of nintedanib administered in combination with docetaxel was conducted.

Paediatric population

The European Medicines Agency has waived the obligation to submit the results of studies with Vargatef in all subsets of the paediatric population in non-small cell lung cancer (see section 4.2 for information on paediatric use).

5.2 Pharmacokinetic properties

Absorption

Nintedanib reached maximum plasma concentrations approximately 2 - 4 hours after oral administration as soft gelatin capsule under fed conditions (range 0.5 - 8 hours). The absolute bioavailability of a 100 mg dose was 4.69 % (90 % CI: 3.615 - 6.078) in healthy volunteers. Absorption and bioavailability are decreased by transporter effects and substantial first-pass metabolism. Dose proportionality was shown by increase of nintedanib exposure (dose range 50 - 450 mg
Once daily and 150 - 300 mg twice daily. Steady state plasma concentrations were achieved within one week of dosing at the latest.

After food intake, nintedanib exposure increased by approximately 20 % compared to administration under fasted conditions (CI: 95.3 - 152.5 %) and absorption was delayed (median t\textsubscript{max} fasted: 2.00 hours; fed: 3.98 h).

Distribution

Nintedanib follows at least bi-phasic disposition kinetics. After intravenous infusion, a high volume of distribution (V\textsubscript{ss}: 1050 L, 45.0 % gCV) was observed.

The *in vitro* protein binding of nintedanib in human plasma was high, with a bound fraction of 97.8 %. Serum albumin is considered to be the major binding protein. Nintedanib is preferentially distributed in plasma with a blood to plasma ratio of 0.869.

Biotransformation

The prevalent metabolic reaction for nintedanib is hydrolytic cleavage by esterases resulting in the free acid moiety BIBF 1202. BIBF 1202 is subsequently glucuronidated by UGT enzymes, namely UGT 1A1, UGT 1A7, UGT 1A8, and UGT 1A10 to BIBF 1202 glucuronide.

Only a minor extent of the biotransformation of nintedanib consisted of CYP pathways with CYP 3A4 being the predominant enzyme involved. The major CYP-dependent metabolite could not be detected in plasma in the human ADME study. *In vitro*, CYP-dependent metabolism accounted for about 5 % compared to about 25 % ester cleavage.

In preclinical *in vivo* experiments, BIBF 1202 did not show efficacy despite its activity at target receptors of the substance.

Elimination

Total plasma clearance after intravenous infusion was high (CL: 1390 mL/min, 28.8 % gCV). Urinary excretion of the unchanged active substance within 48 h was about 0.05 % of the dose (31.5 % gCV) after oral and about 1.4 % of dose (24.2 % gCV) after intravenous administration; the renal clearance was 20 mL/min (32.6 % gCV). The major route of elimination of drug related radioactivity after oral administration of [14C] nintedanib was via faecal/biliary excretion (93.4 % of dose, 2.61 % gCV). The contribution of renal excretion to the total clearance was low (0.649 % of dose, 26.3 % gCV). The overall recovery was considered complete (above 90 %) within 4 days after dosing. The terminal half-life of nintedanib was between 10 and 15 h (gCV % approximately 50 %).

Linearity/non-linearity

The pharmacokinetics of nintedanib can be considered linear with respect to time (i.e. single-dose data can be extrapolated to multiple-dose data). Accumulation upon multiple administrations was 1.04-fold for C\textsubscript{max} and 1.38-fold for AUC\textsubscript{T}. Nintedanib trough concentrations remained stable for more than one year.

Other information on drug-drug interactions

Metabolism

Drug-drug interactions between nintedanib and CYP substrates, CYP inhibitors, or CYP inducers are not expected, since nintedanib, BIBF 1202, and BIBF 1202 glucuronide did not inhibit or induce CYP enzymes in preclinical studies nor was nintedanib metabolized by CYP enzymes to a relevant extent.

Transport

Nintedanib is a substrate of P-gp. For the interaction potential of nintedanib with this transporter, see section 4.5. Nintedanib was shown to be not a substrate or inhibitor of OATP-1B1, OATP-1B3, OATP-2B1, OCT-2, or MRP-2 *in vitro*. Nintedanib was also not a substrate of BCRP. Only a weak inhibitory potential on OCT-1, BCRP, and P-gp was observed *in vitro* which is considered to be of low clinical relevance. The same applies for nintedanib being a substrate of OCT-1.

Pharmacokinetic/pharmacodynamic relationship(s)

In exploratory pharmacokinetic adverse event analyses, higher exposure to nintedanib tended to be associated with liver enzyme elevations, but not with gastrointestinal adverse events. PK-efficacy analyses were not performed for clinical endpoints. Logistic regression revealed a statistically significant association between nintedanib exposure and DCE-MRI response.

Population pharmacokinetic analysis in special populations

The pharmacokinetic properties of nintedanib were similar in healthy volunteers, cancer patients, and patients of the target population. Exposure to nintedanib was not influenced by gender (body weight corrected), mild and moderate renal impairment (estimated by creatinine clearance), liver metastases, ECOG performance score, alcohol consumption, and P-gp genotype.
Population PK analyses indicated moderate effects on exposure to nintedanib depending on age, body weight, and race (see below). Based on the high inter-individual variability of exposure observed in the clinical LUME-Lung-1 trial these effects are not considered clinically relevant. However, close monitoring is recommended in patients with several of these risk factors (see section 4.4).

Age

Exposure to nintedanib increased linearly with age. $\text{AUC}_{\text{T},\text{ss}}$ decreased by 16 % for a 45-year old patient (5th percentile) and increased by 13 % for a 76-year old patient (95th percentile) relative to a patient with the median age of 62 years. The age range covered by the analysis was 29 to 85 years; approximately 5 % of the population were older than 75 years.

Studies in paediatric populations have not been performed.

Body weight

An inverse correlation between body weight and exposure to nintedanib was observed. $\text{AUC}_{\text{T},\text{ss}}$ increased by 25 % for a 50 kg patient (5th percentile) and decreased by 19 % for a 100 kg patient (95th percentile) relative to a patient with the median weight of 71.5 kg.

Race

The geometric mean exposure to nintedanib was 33 % higher in Chinese, Taiwanese, and Indian patients while it was 22 % lower in Koreans compared to Caucasians (body weight corrected). Based on the high inter-individual variability of exposure these effects are not considered clinically relevant. Data from black individuals was very limited but in the same range as for Caucasians.

Hepatic impairment

In a dedicated single dose phase I study and compared to healthy subjects, exposure to nintedanib based on C_{max} and AUC was 2.2-fold higher in volunteers with mild hepatic impairment (Child Pugh A; 90% CI 1.3 – 3.7 for C_{max} and 1.2 – 3.8 for AUC, respectively). In volunteers with moderate hepatic impairment (Child Pugh B), exposure was 7.6-fold higher based on C_{max} (90% CI 4.4 – 13.2) and 8.7-fold higher (90% CI 5.7 – 13.1) based on AUC, respectively, compared to healthy volunteers. Subjects with severe hepatic impairment (Child Pugh C) have not been studied.

5.3 Preclinical safety data

General toxicology

Single dose toxicity studies in rats and mice indicated a low acute toxic potential of nintedanib. In repeat dose toxicology studies in rats, adverse effects (e.g. thickening of epiphyseal plates, lesions of the incisors) were mostly related to the mechanism of action (i.e. VEGFR-2 inhibition) of nintedanib. These changes are known from other VEGFR-2 inhibitors and can be considered class effects.

Diarrhoea and vomiting accompanied by reduced food consumption and loss of body weight were observed in toxicity studies in non-rodents.

There was no evidence of liver enzyme increases in rats, dogs, and Cynomolgus monkeys. Mild liver enzyme increases, which were not due to serious adverse effects such as diarrhoea, were only observed in Rhesus monkeys.

Reproduction toxicity

A study of male fertility and early embryonic development to implantation in rats did not reveal effects on the male reproductive tract and male fertility.

In rats, embryofoetal lethality and teratogenic effects were observed at exposure levels below human exposure, at the maximum recommended human dose (MRHD) of 200 mg b.i.d. Effects on the development of the axial skeleton and on the development of the great arteries were also noted at subtherapeutic exposure levels.

In rabbits, embryofoetal lethality was observed at an exposure approximately 8 times higher than at the MRHD. Teratogenic effects on the aortic arches in combination with the heart and the urogenital system were noted at an exposure 4 times higher than at the MRHD and on the embryofoetal development of the axial skeleton at an exposure 3 times higher than at the MRHD.

In rats, small amounts of radiolabelled nintedanib and/or its metabolites were excreted into the milk (≤ 0.5 % of the administered dose).

Genotoxicity studies indicated no mutagenic potential for nintedanib.

6. Pharmaceutical particulars

6.1 List of excipients
Capsule content
medium-chain triglycerides
hard fat
lecithin (soya) (E322)

Capsule shell
gelatin
glycerol (85 %)
titanium dioxide (E171)
iron oxide red (E172)
iron oxide yellow (E172)

Printing ink
shellac
iron oxide black (E172)
propylene glycol (E1520)

6.2 Incompatibilities
Not applicable.

6.3 Shelf life
3 years.

6.4 Special precautions for storage
Do not store above 25°C.
Store in the original package in order to protect from moisture.

6.5 Nature and contents of container
Aluminium/aluminium blisters containing 10 capsules each.

Pack-sizes: 60 or 120 capsules, or multipack of 120 (2 x 60) capsules (2 cartons of 60 capsules each, wrapped in plastic foil).

Pack-size: 60 capsules.
Not all pack-sizes may be marketed.

6.6 Special precautions for disposal and other handling
Any unused product or waste material should be disposed of in accordance with local requirements.

7. Marketing authorisation holder
Boehringer Ingelheim International GmbH
Binger Strasse 173
55216 Ingelheim am Rhein
Germany

8. Marketing authorisation number(s)
EU/1/14/954/001
EU/1/14/954/002
EU/1/14/954/003
EU/1/14/954/004

9. Date of first authorisation/renewal of the authorisation
10. Date of revision of the text

08/2017

Detailed information on this medicinal product is available on the website of the European Medicines Agency:
http://www.ema.europa.eu

Company Contact Details

Boehringer Ingelheim Limited
http://www.boehringer-ingelheim.co.uk

Address
Ellesfield Avenue, Bracknell, Berkshire, RG12 8YS

Fax
+44 (0)1344 741 298

Medical Information e-mail
medinfo@bra.boehringer-ingelheim.com

Telephone
+44 (0)1344 424 600

Medical Information Direct Line
+44 (0)1344 742579