Conversations in Oncology
November 12-13
Kerry Hotel
Pudong, Shanghai
China
State of the Art: Recent Therapeutic Advances in Lung Cancer 2016

Barbara Melosky, MD
Conflict in My Life
Outline

• Discuss the **Current Treatment Algorithms** in NSCLC
• Provide an overview of **Recent Advances** in the treatment of NSCLC
• Review updates from **ESMO Asia 2015, ELCC Geneva, ASCO Chicago 2016, and ESMO Copenhagen 2016**
Current Treatment: First Thing We Do Is Identify a Driver Mutation!

- EGFR
- ALK
- RARE MUTATIONS:
 - ROS, BRAF, HER 2, RET, MET
Using Multiplexed Assays of Oncogenic Drivers in Lung Cancers to Select Targeted Drugs

Driver, NO TT = 2.4 ys

Driver, TT = 3.5 ys

NO driver = 2.1 ys

Non-Squamous Non-Small Cell Lung Cancers

- KRAS 30%
- EGFR 15%
- Unknown mutation 40%
- ALK 5%
- MET 4%
- BRAF/PK3CA 2%
- HER2/MEK 2%
- ROS1 2%
- RET 1%

Squamous

- Unknown mutation 60%
- FGFR1 amp 20%
- KRAS 6%
- EGFR mut 5%
- DDR2 4%
- PIK3CA 3%
- LBRAF 2%

MSKCC data
Del19 and L858R: Most Common Mutations in the Tyrosine Kinase Domain of EGFR in NSCLC

Del19 = exon 19 deletions; EGF = epidermal growth factor; EGFR = epidermal growth factor receptor; L858R = exon 21 L858R point mutation; NSCLC = non–small cell lung cancer.

• Gefitinib: 9.5 months
• Chemotherapy: 6.3 months
 - HR 0.48; 95% CI 0.36-0.64; P<0.001

• Erlotinib: 10.4 months
• Chemotherapy: 5.2 months
 - HR 0.34; 95% CI 0.23, 0.49; P<0.001

Sub-group analyses of progression-free survival in the intention-to-treat population²
IPASS: OS EGFR Mutation +

Gefitinib (n=132)
Carboplatin/paclitaxel (n=129)
HR (95% CI)
1.00; P=0.990
Median OS
G 21.6 months
C/P 21.9 months

HR 1.00

Overall Survival

EURTAC Overall Survival

OS
Erlotinib (n = 86)
Chemo (n = 87)

19.3
19.5
1.04 (0.65-1.68),
P = 0.8702

HR 1.04

Fukuoka M et al. JCO. 2011;29;2866-2874.

EGFR TKI First- and Second-Generation

<table>
<thead>
<tr>
<th>Agent</th>
<th>Reversibility</th>
<th>Targets (IC(_{50}), nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gefitinib</td>
<td>Reversible</td>
<td>EGFR (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HER2 (1830)</td>
</tr>
<tr>
<td>Erlotinib</td>
<td>Reversible</td>
<td>EGFR (0.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HER2 (512)</td>
</tr>
<tr>
<td>Dacomitinib</td>
<td>Irreversible</td>
<td>EGFR (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HER2 (46)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HER4 (74)</td>
</tr>
<tr>
<td>Afatinib</td>
<td>Irreversible</td>
<td>EGFR (0.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HER2 (14)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HER4 (1.0)</td>
</tr>
</tbody>
</table>
Afatinib: LUX-Lung 3 and LUX-Lung 6

Stage IIIb (wet)/IV lung adenocarcinoma
EGFR mutation in tumour
(central lab testing; TheraScreen® EGFR29a RGQ PCR)

Randomisation 2:1
Stratified by EGFR mutation
(Del19/L858R/other)

LUX-Lung 3
(n=345)

Cisplatin + Pemetrexed
75 mg/m² + 500 mg/m²
IV q21d, up to 6 cycles

Afatinib
40 mg/db

Primary end point: PFS (RECIST 1.1, independent review)c
Secondary end points: OS, PRO,d ORR, DCR, DOR, tumour shrinkage, safety

Cisplatin + Gemcitabine
75 mg/m² + 1000 mg/m² D1, D8
IV q21d, up to 6 cycles

LUX-Lung 6
(n=364; Asian pts)

EGFR = epidermal growth factor receptor; RGQ = rotor-gene Q; PCR = polymerase chain reaction; PFS = progression-free survival; RECIST = Response Evaluation Criteria in Solid Tumours; ORR = objective response rate; DCR = disease control rate; DOR = duration of response; OS = overall survival.

*EGFR29: 19 deletions in exon 19, 3 insertions in exon 20, L858R, L861Q, T790M, G719S, G719A and G719C (or G719X), S768I; Dose escalated to 50 mg if limited AEs observed in cycle 1. Dose reduced by 10-mg decrements in case of related G3 or prolonged G2 AE; Tumour assessments: q6 weeks until week 48 and q12 weeks thereafter until progression/start of new therapy; Patient-reported outcomes: EQ-5D, EORTC QLQ-C30 and LC 13 at randomisation and q3 weeks until progression or new anticancer therapy.

Note: 15 patients in LUX-Lung 3 and 23 patients in LUX-Lung 6 were still on treatment as of May 2014.

LUX-Lung 3: n=345
LUX-Lung 6: n=364 (Asian pts)
LUX-Lung 3 and LUX-Lung 6: Significant Improvement in PFS

Patients with common mutations*

<table>
<thead>
<tr>
<th></th>
<th>LUX-Lung 3 (n=308) Afatinib vs Cis/Pem</th>
<th>LUX-Lung 6 (n=324) Afatinib vs Cis/Gem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS</td>
<td>13.6 mo vs 6.9 mo</td>
<td>11.0 mo vs 5.6 mo</td>
</tr>
<tr>
<td>HR for PFS</td>
<td>0.47, (P<0.0001)</td>
<td>0.25, (P<0.0001)</td>
</tr>
</tbody>
</table>

*Exon 19 deletions or exon 21 [L858R] substitutions.

PFS = progression-free survival.

13.6 mo. in LL3
11.0 mo in LL6
LUX-Lung 3 and LUX-Lung 6: OS in Del19 Subgroup

LUX-Lung 3

- **Afatinib** (n=112)
 - Median, months: 33.3
 - HR (95% CI): 0.54 (0.36–0.79)
 - *P*-value: 0.0015

- **Cis/Pem** (n=57)
 - Median, months: 21.1

LUX-Lung 6

- **Afatinib** (n=124)
 - Median, months: 31.4
 - HR (95% CI): 0.64 (0.44–0.94)
 - *P*-value: 0.0229

- **Cis/Gem** (n=62)
 - Median, months: 18.4

Estimated OS Probability

- **Afatinib**
- **Cis/Pem**

Time (Months): 0 3 6 9 12 18 21 24 27 30 33 36 39 42 45 48 51

No. at risk:

- **Afatinib**
 - 112 108 105 102 96 93 80 82 72 62 58 51 34 30 21 6 1 0
- **Cis/Pem**
 - 57 55 46 43 37 33 27 25 22 20 16 10 6 1 1 0 0

- **Afatinib**
 - 124 122 118 115 106 99 90 80 73 69 59 39 16 8 1 0 0
- **Cis/Gem**
 - 62 58 53 49 44 35 30 28 26 21 18 11 4 3 0 0

IMPRESSIVE

Estimated OS Probability

- **Afatinib**
- **Cis/Gem**

Time (Months): 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

The Impact of 1st-line TKIs on OS: Meta-Analysis of Phase III Trials by Mutation Type – Del19

<table>
<thead>
<tr>
<th>Agent</th>
<th>Study</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afatinib</td>
<td>LUX-Lung 3</td>
<td>0.53 (0.36-0.79)</td>
</tr>
<tr>
<td></td>
<td>LUX-Lung 6</td>
<td>0.64 (0.44-0.94)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0.59 (0.45-0.77)</td>
</tr>
<tr>
<td>Erlotinib</td>
<td>ENSURE</td>
<td>0.79 (0.48-1.30)</td>
</tr>
<tr>
<td></td>
<td>EURTAC</td>
<td>0.94 (0.57-1.54)</td>
</tr>
<tr>
<td></td>
<td>OPTIMAL</td>
<td>1.52 (0.91-2.52)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1.04 (0.71-1.51)</td>
</tr>
<tr>
<td>Gefitinib</td>
<td>IPASS</td>
<td>0.86 (0.61-1.22)</td>
</tr>
<tr>
<td></td>
<td>NEJ002</td>
<td>0.83 (0.52-1.34)</td>
</tr>
<tr>
<td></td>
<td>WJTOG3405</td>
<td>1.19 (0.65-2.18)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0.90 (0.70-1.17)</td>
</tr>
</tbody>
</table>

Central or local test.

†Dose modification to 50, 30, 20 mg permitted in line with prescribing information.

LUX-Lung 7: PFS

Objective response and duration of response (independent review)

- ORR 70% vs 56%

<table>
<thead>
<tr>
<th></th>
<th>Axitinib (n=112)</th>
<th>Gefitinib (n=89)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median DoR (months)</td>
<td>10.1</td>
<td>8.4</td>
</tr>
<tr>
<td>95% CI</td>
<td>(7.8–11.1)</td>
<td>(7.4–10.5)</td>
</tr>
</tbody>
</table>

PFS by independent review

<table>
<thead>
<tr>
<th></th>
<th>Axitinib (n=160)</th>
<th>Gefitinib (n=159)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS (months)</td>
<td>11.0</td>
<td>10.9</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.73 (0.57–0.95)</td>
<td></td>
</tr>
<tr>
<td>p value</td>
<td>0.0165</td>
<td></td>
</tr>
</tbody>
</table>

ORR 70% vs 56%

HR 0.73 P=0.0165
LUX-Lung 7: Time to Treatment Failure (TTF)

- **Afatinib** (n=160)
 - Median TTF (months): 13.7
 - HR (95% CI): 0.73 (0.58–0.92)
 - P value: 0.0073

- **Gefitinib** (n=159)
 - Median TTF (months): 11.5
 - HR (95% CI): 0.73 (0.58–0.92)
 - P value: 0.0073

Not All TKIs Are Created Equal – LUX-Lung 7
Side Effects

<table>
<thead>
<tr>
<th>AE category, %</th>
<th>Afatinib (n=160)</th>
<th>Gefitinib (n=159)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Grade 3</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>90.0</td>
<td>11.9</td>
</tr>
<tr>
<td>Rash/acne*</td>
<td>88.8</td>
<td>9.4</td>
</tr>
<tr>
<td>Stomatitis*</td>
<td>64.4</td>
<td>4.4</td>
</tr>
<tr>
<td>Paronychia*</td>
<td>55.6</td>
<td>1.9</td>
</tr>
<tr>
<td>Dry skin</td>
<td>32.5</td>
<td>-</td>
</tr>
<tr>
<td>Pruritus</td>
<td>23.1</td>
<td>-</td>
</tr>
<tr>
<td>Fatigue*</td>
<td>20.6</td>
<td>5.6</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>16.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Nausea</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Alopecia</td>
<td>10.6</td>
<td>-</td>
</tr>
<tr>
<td>Vomiting</td>
<td>10.6</td>
<td>-</td>
</tr>
<tr>
<td>ALT increased</td>
<td>9.4</td>
<td>-</td>
</tr>
<tr>
<td>AST increased</td>
<td>6.3</td>
<td>-</td>
</tr>
</tbody>
</table>

*Grouped terms of AEs

No case of ILD.

Four cases of ILD, three of them ≥ grade 3.
AFATINIB VERSUS GEFITINIB IN PATIENTS WITH EGFR MUTATION-POSITIVE NSCLC: OVERALL SURVIVAL DATA FROM THE PHASE IIB TRIAL LUX-LUNG 7

Luis Paz-Ares, Eng-Huat Tan, Li Zhang, Vera Hirsh, Kenneth O'Byrne, Michael Boyer, James Chih-Hsin Yang, Tony Mok, Ki Hyeong Lee, Shun Lu, Yuankai Shi, Sang-We Kim, Janessa Laskin, Dong-Wan Kim, Scott A. Laurie, Karl Kölbeck, Jean Fan, Nigel Dodd, Angela Märten, Keunchil Park
Updated Tumour Response

DoR = duration of response.

<table>
<thead>
<tr>
<th></th>
<th>Afatinib</th>
<th>Gefitinib</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR (%)</td>
<td>P=0.002</td>
<td>P=0.150</td>
</tr>
<tr>
<td>Total</td>
<td>73</td>
<td>56</td>
</tr>
<tr>
<td>Del19</td>
<td>75</td>
<td>66</td>
</tr>
<tr>
<td>L858R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Median DoR (months):
- Afatinib: 10.1
- Gefitinib: 8.3

95% CI:
- Afatinib: (8.2–11.1)
- Gefitinib: (7.3–10.2)
OS (Overall Population)

Estimated OS probability over time (months):

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>Afatinib (n=160)</th>
<th>Gefitinib (n=159)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median, months</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.9</td>
<td>24.5</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.86 (0.66–1.12)</td>
<td></td>
</tr>
<tr>
<td>P-value</td>
<td>0.2580</td>
<td></td>
</tr>
</tbody>
</table>

Not significant
OS by EGFR Mutation Subtype

Del19

<table>
<thead>
<tr>
<th></th>
<th>Afatinib N=93</th>
<th>Gefitinib N=93</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median, mo</td>
<td>30.7</td>
<td>26.4</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.83 (0.58–1.17)</td>
<td>0.2841</td>
</tr>
</tbody>
</table>

L858R

<table>
<thead>
<tr>
<th></th>
<th>Afatinib N=67</th>
<th>Gefitinib N=66</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median, mo</td>
<td>25.0</td>
<td>21.2</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.91 (0.62–1.36)</td>
<td>0.6585</td>
</tr>
</tbody>
</table>

No. at risk:

- Afatinib: 93 88 82 68 61 50 35 20 1
- Gefitinib: 93 86 79 66 52 39 29 17 0

No. at risk:

- Afatinib: 67 65 57 43 33 24 15 10 1
- Gefitinib: 66 62 54 39 28 23 19 10 0
Molecular Mechanisms of Acquired Resistance to EGFR TKI (N = 155)

First-, Second-, and Third-Generation EGFR TKIs

<table>
<thead>
<tr>
<th>Agent</th>
<th>Reversibility</th>
<th>Targets (IC$_{50}$, nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gefitinib</td>
<td>Reversible</td>
<td>EGFR (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HER2 (1830)</td>
</tr>
<tr>
<td>Erlotinib</td>
<td>Reversible</td>
<td>EGFR (0.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HER2 (512)</td>
</tr>
<tr>
<td>Dacomitinib</td>
<td>Irreversible</td>
<td>EGFR (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HER2 (46)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HER4 (74)</td>
</tr>
<tr>
<td>Afatinib</td>
<td>Irreversible</td>
<td>EGFR (0.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HER2 (14)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HER4 (1.0)</td>
</tr>
<tr>
<td>Osimertinib</td>
<td></td>
<td>EGFR (17)</td>
</tr>
<tr>
<td>Olmutinib</td>
<td></td>
<td>TARGET T790</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EGFR (9)</td>
</tr>
</tbody>
</table>
PFS AURA Trial

2nd-Line Acquired T790 M+

OSIMERTINIB

AURA pooled Ph II

PFS 11 months

AURA pooled Ph II

Probability of PFS

Best percentage change from baseline in target lesion size (%)

Complete response
Partial response
Stable disease
Progressive disease
Not evaluable

66%

Number of patients at risk:

Osimertinib 80 mg

0 100 80 60 40 20 0

-20 -40 -60 -80 -100

0 3 6 9 12 15 18 21 24 27

Month

ELCC Geneva 2016

Yang et al. ELCC 2016. Abstract LBA2_PR.
Causally Related AEs: AURA Ph I

<table>
<thead>
<tr>
<th>Causally-related AEs occurring in ≥15% of patients overall, n (%)</th>
<th>AURA Ph I (80 mg) N=63</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 1</td>
</tr>
<tr>
<td>Rash (grouped terms)</td>
<td>21 (33)</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>16 (25)</td>
</tr>
<tr>
<td>Paronychia (grouped terms)</td>
<td>11 (18)</td>
</tr>
<tr>
<td>Dry skin (grouped terms)</td>
<td>11 (18)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>9 (14)</td>
</tr>
</tbody>
</table>

NO RASH or DIARRHOEA

ILD (grouped terms)	0	0	1 (2)	1 (2)
Hyperglycaemia	0	0	0	0
QT prolongation	0	0	1 (2)	1 (2)

ILD 2.9 %

35/1200 pts
MRS. W
Gefitinib for 1 year
AZ9291 November 24th

November 10, 2015
January 20, 2016

Treatment:
- Stop drug
- High dose iv steroids
AURA3 Study Design

- A Phase III, open-label, randomised study of 410 patients

POSITIVE TRIAL: PFS

World Lung Vienna 2016

- NSCLC EGFR M+ Progression on EGFR TKI
 - T790M+ (n=410)
 - AZD9291 (80 mg po QD) (n=273)
 - Platinum-based doublet chemotherapy q 3 w (n=137)
T790M Biopsy: Tumor vs Plasma

A small piece of tissue is removed with a biopsy needle and analyzed with a microscope.
High ORR in Patients With Tumour or Plasma-Positive T790M: Patients Treated With Osimertinib

ELCC Geneva 2016

Oxnard et al. ELCC 2016.
Summary: EGFR

• Current:
 – First line: Gefitinib/Erlotinib/Afatinib

• Recent Advances:
 – ELCC
 ▪ Osimertinib Aura Trial 2nd Line T790M+: PFS 11m
 – ASCO 2016
 ▪ T790: Plasma may be as accurate as tumour
 – ESMO 2016:
 ▪ LUX-Lung 7 Afatinib OS 27.9 vs 24.5 months not significant

Non-Squamous Non-Small Cell Lung Cancers

- **Unknown mutation**: 40%
- **KRAS**: 30%
- **EGFR**: 15%
- **ALK**: 5%
- **MET**: 4%
- **BRAF/PK3CA**: 2%
- **HER2/MEK**: 2%
- **ROS1**: 2%
- **RET**: 1%

ALK

- **Unknown mutation**: 60%
- **FGFR1 amp**: 20%
- **KRAS 6%**
- **EGFR mut 5%**
- **DDR2 4%**
- **PIK3CA 3%**
- **BRAF 2%**

SMKCC data
PROFILE 1014: First-line Crizotinib vs Pem/Cis PFS

<table>
<thead>
<tr>
<th></th>
<th>Crizotinib (N=172)</th>
<th>Chemotherapy (N=172)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events, n (%)</td>
<td>100 (58)</td>
<td>137 (80)</td>
</tr>
<tr>
<td>Median, months</td>
<td>10.9</td>
<td>7.0</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.45 (0.35−0.60)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

CNS Sanctuary

- Brain is the issue in ALK

MRI Detection of BMs

Solitary lesion Oligometastases Multiple BMs

Acquired Resistance in ALK+ NSCLC

- Most patients develop resistance to crizotinib
 - Usually within 1-2 years
 - CNS relapses are common
- Mechanisms of resistance are diverse
 - ALK resistance mutations
 - Alternative signalling pathways
 - EGFR activation/mutation
 - c-KIT amplification, KRAS mutation

Profile of Second-/Third-Generation ALK Inhibitors

<table>
<thead>
<tr>
<th>Drug</th>
<th>Company</th>
<th>Activity Against L1196M</th>
<th>Other Kinases Inhibited</th>
<th>Clinical Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crizotinib</td>
<td>Pfizer</td>
<td>No</td>
<td>MET, ROS1</td>
<td>Approved</td>
</tr>
<tr>
<td>Ceritinib</td>
<td>Novartis</td>
<td>Yes</td>
<td>ROS1, IGFR1</td>
<td>Approved</td>
</tr>
<tr>
<td>Alectinib</td>
<td>Chugai/Roche</td>
<td>Yes</td>
<td>RET</td>
<td>Phase III</td>
</tr>
<tr>
<td>Brigatinib</td>
<td>Ariad</td>
<td>Yes</td>
<td>ROS1, EGFR</td>
<td>Phase II</td>
</tr>
<tr>
<td>ASP3026</td>
<td>Astellas</td>
<td>Yes</td>
<td>ROS1</td>
<td>Discontinued</td>
</tr>
<tr>
<td>Entrectinib</td>
<td>Ignyta</td>
<td>Unknown</td>
<td>ROS1, TRK1/2/3</td>
<td>Phase II</td>
</tr>
<tr>
<td>X-396</td>
<td>Xcovery</td>
<td>Yes</td>
<td>ROS1</td>
<td>Phase I/II</td>
</tr>
<tr>
<td>TSR-011</td>
<td>Tesaro</td>
<td>Yes</td>
<td>TRK1/2/3</td>
<td>Phase I/II</td>
</tr>
<tr>
<td>PF-06463922</td>
<td>Pfizer</td>
<td>Yes</td>
<td>ROS1</td>
<td>Phase I/II</td>
</tr>
</tbody>
</table>
Best Percentage Change From Baseline (NSCLC)

*Patients with measurable disease at baseline and at least 1 post baseline assessment without unknown response for target lesion or overall response.
ESMO 2014

ASCEND 1: PFS

STANDARD OF CARE SECOND LINE US
3.40 (95% CI 11.10, non-estimable)
Median: 9.03 (95% CI 6.93, 10.97)
Median: 6.93 (95% CI 5.55, 8.67)
RR 61.8%

Number of patients still at risk
NSCLC with prior ALKi 163 108 79 52 29 13 2 1 0 0 0 0 0
NSCLC ALKi naïve 83 69 55 43 32 17 6 2 0 0 0 0 0
All NSCLC 246 177 134 95 61 30 8 3 0 0 0 0 0
ASCEND-5

ESMO 2016

Stage IIIB/IV ALK+ NSCLC
PD at enrollment after prior crizotinib and chemotherapy
(1 platinum doublet)

236 patients
Randomize 1:1
Stratified: PS; brain metastases

Chemotherapy (INV choice):
PEM 500 mg/m²
or
Docetaxel 75 mg/m²

Ceritinib 750 mg/day
• Continuous oral dosing
• Once daily
• 21-day cycle

Optional

PEM maintenance
500 mg/m² q21d

PD (BIRC real time)

Optional

Ceritinib 750 mg
crossover

PD

ASCEND-5

Kaplan-Meier Plots of PFS (BIRC)

<table>
<thead>
<tr>
<th></th>
<th>Ceritinib 750 mg (N=115)</th>
<th>Chemotherapy (N=116)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events, n (%)</td>
<td>83 (72.2)</td>
<td>89 (76.7)</td>
</tr>
<tr>
<td>Median (95% CI), months</td>
<td>5.4 (4.1, 6.9)</td>
<td>1.6 (1.4, 2.8)</td>
</tr>
<tr>
<td>Hazard ratio (95% CI)</td>
<td>0.49 (0.36, 0.67)</td>
<td></td>
</tr>
<tr>
<td>Log-rank p-value</td>
<td>< 0.001</td>
<td></td>
</tr>
</tbody>
</table>

Scagliotti et al. ESMO 2016. LBA42_PR.
Secondary Survival Endpoints

<table>
<thead>
<tr>
<th></th>
<th>Ceritinib (N=115)</th>
<th>Chemotherapy (N=116)</th>
<th>HR (95% CI)</th>
<th>Log-rank p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS by investigator (95% CI), months</td>
<td>6.7 (4.4, 7.9)</td>
<td>1.6 (1.4, 2.6)</td>
<td>0.40 (0.29, 0.54)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

- OS data were immature (~50% of required events) and possibly confounded by the high number of patients who crossed over to ceritinib following PD with chemotherapy (n=75)
- At the data cut-off, there was no difference in median OS
 - HR (95% CI) = 1.0 (0.67, 1.49)
 - Log-rank p-value = 0.496
 - Median OS (95% CI)
 - Ceritinib = 18.1 months (13.4, 23.9)
 - Chemotherapy = 20.1 months (11.9, 25.1)

20 months third line!
Alectinib in Patients With Crizotinib-resistant ALK+ NSCLC Phase II

Systemic BOR:
- PD (n=22)
- SD (n=35)
- PR (n=61)

Sum of longest diameter, maximum decrease from baseline (%)

RR 61%
Crizotinib and ceritinib are P-gp substrates; alectinib is not

Updated analysis cut-off 8 Jan 2015.
CNS = central nervous system.
Adapted from: Ou et al. ASCO 2015.
Reported Grade 3/4 Adverse Events With Alectinib

<table>
<thead>
<tr>
<th>AE of any cause in ≥10% patients, n (%)</th>
<th>All</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constipation</td>
<td>45 (33)</td>
<td>39 (28)</td>
<td>6 (4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>36 (26)</td>
<td>26 (19)</td>
<td>8 (6)</td>
<td>2 (1)</td>
<td>0</td>
</tr>
<tr>
<td>Peripheral edema</td>
<td>34 (25)</td>
<td>27 (20)</td>
<td>6 (4)</td>
<td>1 (1)</td>
<td>0</td>
</tr>
<tr>
<td>Myalgia</td>
<td>31 (23)</td>
<td>25 (18)</td>
<td>5 (4)</td>
<td>1 (1)</td>
<td>0</td>
</tr>
<tr>
<td>Asthenia</td>
<td>25 (18)</td>
<td>16 (12)</td>
<td>8 (6)</td>
<td>1 (1)</td>
<td>0</td>
</tr>
<tr>
<td>Headache</td>
<td>22 (16)</td>
<td>16 (12)</td>
<td>4 (3)</td>
<td>2 (1)</td>
<td>0</td>
</tr>
<tr>
<td>Cough</td>
<td>19 (14)</td>
<td>15 (11)</td>
<td>4 (3)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>18 (13)</td>
<td>8 (6)</td>
<td>5 (4)</td>
<td>4 (3)</td>
<td>0*</td>
</tr>
<tr>
<td>Nausea</td>
<td>16 (12)</td>
<td>13 (9)</td>
<td>3 (2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AST elevation</td>
<td>16 (12)</td>
<td>13 (9)</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Rash</td>
<td>16 (12)</td>
<td>15 (11)</td>
<td>1 (1)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vomiting</td>
<td>15 (11)</td>
<td>10 (7)</td>
<td>4 (3)</td>
<td>1 (1)</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>14 (10)</td>
<td>10 (7)</td>
<td>3 (2)</td>
<td>1 (1)</td>
<td>0</td>
</tr>
<tr>
<td>ALT elevation</td>
<td>14 (10)</td>
<td>7 (5)</td>
<td>5 (4)</td>
<td>1 (1)</td>
<td>1 (1)</td>
</tr>
</tbody>
</table>

*One patient had a grade 5 event, unrelated to treatment.

AE = adverse event; ALT= serum glutamic-pyruvic transaminase (enzyme); AST = serum glutamic-oxaloacetic transaminase (enzyme).

Adapted from: Ou et al. ASCO 2015.
JALEX Study

Alectinib vs Crizotinib first line ALK Positive
A phase III study in Japan;
PFS superior when treated with alectinib
Primary Endpoint: PFS

sodium lauryl sulphate (SLS)

300 mg bid

Alectinib (N=103)
Crizotinib (N=104)

Events, n (%)
25 (24.3%)
58 (55.8%)

Median, mo [95% CI]
NR [20.3 - NR]
10.2 [8.2 - 12.0]

P-value
<0.0001

HR [99.6826% CI]
0.34 [0.17 - 0.71]

FIRST-LINE

Nokihara H et al. ASCO 2016. Abstract 9008

Approved FDA first line September 21, 2016

NR

PFS NR!
HR .34
P<0.0001

No. of patients at risk
Alectinib 103 103 93 76 49 36 27 9 1
Bcrizotinib 104 102 86 65 40 21 14 4 1

Time (months)
ALTA: Brigatinib Second Line

A phase 2, open-label, multicenter, international study (NCT02094573)

Primary Endpoint: Confirmed ORR per RECIST v1.1 (assessed by investigator)

Key Secondary Endpoints: Confirmed ORR (assessed by an IRC), CNS response (IRC-assessed intracranial ORR and PFS in patients with active brain metastases†), duration of response, PFS, OS, safety, and tolerability

Randomized phase 2 design not intended for statistical comparisons between arms; however, post hoc comparisons were performed on PFS and OS to support dose selection
Brigatinib Antitumour Activity by Arm

90 mg qd

ORR 45%

180 mg qd†

ORR 54%

Dotted line at −30% indicates threshold for partial response per RECIST v1.1
* Single response awaiting confirmation
† Patient had a lymph node target lesion which resolved to <10 mm shortest diameter (CR per RECIST v1.1)
‡ 180 mg qd with 7-day lead-in at 90 mg
¶ Category includes single responses that were not confirmed

Data as of February 29, 2016

Gettinger SN et al. ASCO 2016. Abstract 9060
Median PFS exceeds 1 year (12.9 months) with 180 mg brigatinib

<table>
<thead>
<tr>
<th>Arm</th>
<th>Events / Total (%)</th>
<th>1-Year PFS Probability, % (95% CI)</th>
<th>Median PFS (95% CI)</th>
<th>Hazard Ratio (95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 mg qd</td>
<td>50/112 (45)</td>
<td>39 (27–52)</td>
<td>9.2 months (7.4–15.6)</td>
<td>0.55 (0.35–0.86)</td>
</tr>
<tr>
<td>180 mg qd*</td>
<td>31/110 (28)</td>
<td>54 (37–68)</td>
<td>12.9 months (11.1–not reached)</td>
<td>0.55 (0.35–0.86)</td>
</tr>
</tbody>
</table>

*180 mg qd with 7-day lead-in at 90 mg
† Study was not designed to compare treatment arms statistically; however, post hoc comparisons were performed to support dose selection

Data as of February 29, 2016

Gettinger SN et al. ASCO 2016. Abstract 9060
Second-Generation ALK Inhibitors

<table>
<thead>
<tr>
<th></th>
<th>Ceritinib^1 N= 163</th>
<th>Alectinib^2 N=138</th>
<th>Brigatinib^3 N = 110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design/Assessment</td>
<td>Phase I/II Investigator/BIRC</td>
<td>Phase 2 BIRC</td>
<td>Phase 2 Investigator</td>
</tr>
<tr>
<td>PS 2</td>
<td>12%</td>
<td>9%</td>
<td>8%</td>
</tr>
<tr>
<td>Brain Mets</td>
<td>60%</td>
<td>61%</td>
<td>67%</td>
</tr>
<tr>
<td>Previous Rx</td>
<td>56% (≥ 3 prior)</td>
<td>80% (≥ 2 prior)</td>
<td>74% (≥ 2 prior)</td>
</tr>
<tr>
<td>ORR</td>
<td>56% (49-64)</td>
<td>50% (41 – 59)</td>
<td>54% (43-65)</td>
</tr>
<tr>
<td>CNS Response</td>
<td>36%* N = 28</td>
<td>57% N = 35</td>
<td>67% N = 12</td>
</tr>
<tr>
<td>Median PFS</td>
<td>6.9 m (5.6 – 8.7)</td>
<td>8.9 (5.6-11.3)</td>
<td>12.9 (11.1- NR)</td>
</tr>
</tbody>
</table>

*Retrospective Assessment
2. Ou, JCO 2016
Lorlatinib – a Next-Generation ALK/ROS1 Inhibitor

- Resistance to ALK TKIs can develop through secondary mutations in the ALK kinase domain\(^1\)–\(^3\)
 - Secondary mutations have been observed in \(~25\%\) of patients with resistance to crizotinib\(^3\),\(^4\)

- Similarly, a subset of patients appear to develop acquired resistance to crizotinib through point mutations in the ROS1 kinase domain\(^4\)–\(^6\)

- Using structure-based design, lorlatinib was identified as a novel macrocyclic ALK inhibitor with broad-spectrum ALK potency and CNS penetration\(^1\)

- Lorlatinib is also a potent inhibitor of ROS1\(^2\)

\(^1\) Johnson TW, et al. *J Med Chem* 2014;57:4720-44
\(^3\) Doebele RC, et al. *Clin Cancer Res* 2012;18:1472-82
\(^4\) Zou HY, et al. *PNAS* 2015;112:3493-8

ALK, anaplastic lymphoma kinase; ROS1, c-ros oncogene 1; TKI, tyrosine kinase inhibitor
Clinical Activity: LORLATINIB ALK+ Patients

ORR 46%

PFS 11.4 months

Median PFS, months (95% CI): 11.4 (3.4–16.6)
12-month PFS, % (95% CI): 41.0 (23.2–58.0)
18-month PFS, % (95% CI): 23.4 (6.0–47.3)
Treatment-Related Adverse Events in ≥15% of Patients Treated at the RP2D

LORLATINIB

<table>
<thead>
<tr>
<th>Adverse event, n (%)</th>
<th>All Grades</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any AE</td>
<td>16 (94)</td>
<td>2 (12)</td>
<td>9 (53)</td>
<td>5 (30)</td>
<td>0</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>14 (82)</td>
<td>5 (29)</td>
<td>7 (41)</td>
<td>2 (12)</td>
<td>0</td>
</tr>
<tr>
<td>Peripheral edema</td>
<td>9 (53)</td>
<td>6 (35)</td>
<td>3 (18)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hypertriglyceridemia</td>
<td>7 (41)</td>
<td>3 (18)</td>
<td>2 (12)</td>
<td>2 (12)</td>
<td>0</td>
</tr>
<tr>
<td>Slow speech</td>
<td>3 (18)</td>
<td>3 (18)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Includes the preferred terms hypercholesterolemia and total cholesterol increased

**Includes the preferred terms hypertriglyceridemia and blood triglycerides increased

Other Grade 3 events included lipase increased and delirium

AE, adverse event; QD, once daily; RP2D, recommended phase II dose

Solomon B et al. ASCO 2016. Abstract 9009
Summary: ALK

• Current:
 – First Line: Crizotinib
 – Second Line: Ceritinib/Alectinib

• Recent Advances:
 – ASCO 2016
 ▪ First Line: Japan Alectinib
 ▪ Second Line: Brigatinib
 ▪ Third Line: Lorlatinib
 – ESMO 2016
 ▪ Ceritinib Third Line
Non–Small Cell Lung Cancers: 2015

RARE MUTATIONS

Non-Squamous Non-Small Cell Lung Cancers

- KRAS: 30%
- EGFR: 15%
- ALK: 5%
- MET: 4%
- BRAF/PIK3CA: 2%
- HER2/MEK: 2%
- ROS1: 2%
- RET: 1%
- Unknown mutation: 40%

Squamous

- FGFR1 amp: 20%
- KRAS: 6%
- EGFR mut: 5%
- DDR2: 4%
- PIK3CA: 3%
- BRAF: 2%
- Unknown mutation: 60%

MSKCC data
Response in Patients With Advanced ROS1+ NSCLC: Crizotinib

Non-Small Cell Lung Cancers: 2015

Non-Squamous Non-Small Cell Lung Cancers

- **KRAS**: 30%
- **EGFR**: 15%
- **MET**: 4%
- **BRAF/PIK3CA**: 2%
- **ALK**: 5%
- **HER2/MEK**: 2%
- **ROS1**: 2%
- **RET**: 1%
- **Unknown mutation**: 40%

Total: 77%

Squamous

- **FGFR1 amp**: 20%
- **KRAS**: 6%
- **EGFR mut**: 5%
- **DDR2**: 4%
- **PIK3CA**: 3%
- **BRAF**: 2%
- **Unknown mutation**: 60%

Total: 23%

MSKCC data
Maximum Change in Target Lesion by Best Investigator-Assessed Confirmed Response

BRAF V600: Dabrafenib and Trametinib
ORR 63% PFS 8.6 months

Overall response rate: 63% (95% CI, 49-76)

Not Evaluable (NE) patients did not have a follow-up scan required for confirmation.

Presented by: David Planchard, MD, PhD
Non–Small Cell Lung Cancers: 2015

Non-Squamous Non-Small Cell Lung Cancers

- KRAS 30%
- EGFR 15%
- Unknown mutation 40%
- ALK 5%
- MET 4%
- BRAF/PIK3CA 2%
- HER2/MEK 2%
- ROS1 2%
- RET 1%

Squamous

- FGFR1 amp 20%
- KRAS 6%
- EGFR mut 5%
- DDR2 4%
- PIK3CA 3%
- LBRAF 2%
- Unknown mutation 60%

MSKCC data
AFATINIB: HER2 Lung Cancer

- HER2/neu mutations in 2%–4% of lung adenocarcinomas
- More frequent in females, non-smokers and patients of Asian origin
Non–Small Cell Lung Cancers: 2015

Non-Squamous Non-Small Cell Lung Cancers

- KRAS 30%
- EGFR 15%
- Unknown mutation 40%
- ALK 5%
- MET 4%
- BRAF/PIK3CA 2%
- HER2/MEK 2%
- ROS1 2%
- RET 1%

Squamous

- Unknown mutation 60%

MSKCC data

- FGFR1 amp 20%
- KRAS 6%
- EGFR mut 5%
- DDR2 4%
- PIK3CA 3%
- BRAF 2%
Vandetanib 18 Patients
ORR 17% SD 28%
Se-Hoon Lee et al

ASCO 2016

Vandetanib for 8 weeks
Non–Small Cell Lung Cancers: 2015

Non-Squamous Non-Small Cell Lung Cancers

- KRAS: 30%
- EGFR: 15%
- Unknown mutation: 40%
- ALK: 5%
- MET: 4%
- BRAF/PIK3CA: 2%
- HER2/MEK: 2%
- ROS1: 2%
- RET: 1%

Squamous

- FGFR1 amp: 20%
- KRAS: 6%
- EGFR mut: 5%
- DDR2: 4%
- PIK3CA: 3%
- BRAF: 2%
- Unknown mutation: 60%
Response to MET Inhibitors in Patients with Stage IV Lung Adenocarcinomas Harboring MET Mutations Causing Exon 14 Skipping

Paul K. Paik1,2, Alexander Drilon1,2, Pang-Dian Fan3, Helena Yu1,2, Natasha Rekhtman3, Michelle S. Ginsberg4, Laetitia Borsu3, Nikolaus Schultz5,6, Michael F. Berger2,3,5, Charles M. Rudin1,2, and Marc Ladanyi3,5
MET X14 Skipped

Exon 14 (regulatory domain)
CRIZOTINIB

Baseline 4-week follow-up cabozantinib

Patient 7

CABOZANTINIB

Baseline 4-week follow-up cabozantinib

Patient 2
Non–Small Cell Lung Cancers: 2015

Non-Squamous Non-Small Cell Lung Cancers

- KRAS 30%
- EGFR 15%
- Unknown mutation 40%
- ALK 5%
- MET 4%
- BRAF/PIK3CA 2%
- HER2/MEK 2%
- ROS1 2%
- RET 1%

Squamous

- FGFR1 amp 20%
- KRAS 6%
- EGFR mut 5%
- DDR2 4%
- PIK3CA 3%
- BRAF 2%
- Unknown mutation 60%

CMET: EXON 14 Skipping 5% both Non-Squamous and Squamous
Summary: Rare Mutation

- **ROS (1%)**
 - Crizotinib

- **BRAF (2%)**
 - Dabrafenib and trametinib

- **HER 2 (2%)**
 - Afatinib

- **RET (1%)**
 - Vandetanib

- **CMET EXON 14 Slice (5% and Squamous)**
 - Cabozantinib/crizotinib
Non–Small Cell Lung Cancers: 2015

Non-Squamous Non-Small Cell Lung Cancers

- KRAS: 30%
- EGFR: 15%
- Unknown mutation: 40%
- ALK: 5%
- MET: 4%
- BRAF/PIK3CA: 2%
- HER2: 2%
- ROS1: 2%
- RET: 1%

Squamous

- FGFR1 amp: 20%
- KRAS: 6%
- EGFR mut: 5%
- DDR2: 4%
- PIK3CA: 3%
- BRAF: 2%

Unknown mutation: 60%

WILD TYPE: 77%

FGFR1 amp: 20%

Unknown mutation: 60%
Overall Survival in Squamous Cell Carcinoma

Overall Survival Time (months) in Squamous Patients

OS Median (95% CI)
- Cis/Pem (N=244) 9.4 mos (8.4, 10.2)
- Cis/Gem (N=229) 10.8 mos (9.5, 12.1)

Overall Survival in Adenocarcinoma

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Median Survival (95% CI)</th>
<th>Adjusted HR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pemetrexed/Cisplatin</td>
<td>12.6 mo (10.7-13.6)</td>
<td>0.84 (0.71-0.99)</td>
<td>0.033*</td>
</tr>
<tr>
<td>Gemcitabine/Cisplatin</td>
<td>10.9 mo (10.2-11.9)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASCO 2012
PARAMOUNT: Overall Survival

Pemetrexed
Placebo
HR: 0.78 (95% CI: 0.64–0.96)
Log-rank $P = 0.0195$

Survival Probability
Time from Randomisation (Months)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
11.0 months
13.9 months
PEMETREXED/CISPLATIN...PEM MAINTENANCE

Immunotherapy

Science

Breakthrough of the Year
Cancer Immunotherapy
T cells on the attack

AAAS
Targeting PD-1 Pathways

Periphery

- **Dendritic cell**
 - MHC
 - TCR
 - CD28
 - B7
 - Anti-CTLA-4

Tumour microenvironment

- **T cell**
 - Activation (cytokines, lysis, proliferation, migration to tumour)
 - PD-L1

CTLA-4 pathway

- B7
- CD28
- CTLA-4

PD-1 pathway

- PD-L1

Clinical Development of Inhibitors of PD-1 Immune Checkpoint

<table>
<thead>
<tr>
<th>Target</th>
<th>Agent</th>
<th>Molecule</th>
<th>Company</th>
<th>Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD-1</td>
<td>Nivolumab</td>
<td>Fully human IgG4 mAb</td>
<td>Bristol-Myers Squibb</td>
<td>Phase II, III multiple tumors</td>
</tr>
<tr>
<td></td>
<td>Pidilizumab CT-011</td>
<td>Humanized IgG1 mAb</td>
<td>CureTech</td>
<td>Phase II multiple tumors</td>
</tr>
<tr>
<td></td>
<td>Pembrolizumab</td>
<td>Humanized IgG4 mAb</td>
<td>Merck</td>
<td>Phase I-II</td>
</tr>
<tr>
<td></td>
<td>AMP-224</td>
<td>Recombinant PD-L2-Fc fusion protein</td>
<td>GlaxoSmithKline</td>
<td>Phase I</td>
</tr>
<tr>
<td>PD-L1</td>
<td>Avelumab</td>
<td>Fully human IgG4 mAb</td>
<td>EMD Serono</td>
<td>Phase I</td>
</tr>
<tr>
<td></td>
<td>Durvalumab</td>
<td>Engineered human IgG1 mAb</td>
<td>Astra Zeneca</td>
<td>Phase I</td>
</tr>
<tr>
<td></td>
<td>Atezolizumab</td>
<td>Engineered human IgG1 mAb</td>
<td>Roche</td>
<td>Phase I-II</td>
</tr>
</tbody>
</table>

Adapted from Dr. J. Brahmer ASCO 2013
Clinical Development of Inhibitors of PD-1 Immune Checkpoint

<table>
<thead>
<tr>
<th>Target</th>
<th>Agent</th>
<th>Molecule</th>
<th>Company</th>
<th>Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD-1</td>
<td>Nivolumab</td>
<td>Fully human IgG4 mAb</td>
<td>Bristol-Myers Squibb</td>
<td>Phase II, III multiple tumors</td>
</tr>
<tr>
<td></td>
<td>Pidilizumab CT-011</td>
<td>Humanized IgG1 mAb</td>
<td>CureTech</td>
<td>Phase II multiple tumors</td>
</tr>
<tr>
<td></td>
<td>Pembrolizumab</td>
<td>Humanized IgG4 mAb</td>
<td>Merck</td>
<td>Phase I-II</td>
</tr>
<tr>
<td></td>
<td>AMP-224</td>
<td>Recombinant PD-L2-Fc fusion protein</td>
<td>GlaxoSmithKline</td>
<td>Phase I</td>
</tr>
<tr>
<td>PD-L1</td>
<td>Avelumab</td>
<td>Fully human IgG4 mAb</td>
<td>EMD Serono</td>
<td>Phase I</td>
</tr>
<tr>
<td></td>
<td>Durvalumab</td>
<td>Engineered human IgG1 mAb</td>
<td>Astra Zeneca</td>
<td>Phase I</td>
</tr>
<tr>
<td></td>
<td>Atezolizumab</td>
<td>Engineered human IgG1 mAb</td>
<td>Roche</td>
<td>Phase I-II</td>
</tr>
</tbody>
</table>

Adapted from Dr. J. Brahmer ASCO 2013
Overall Survival

CheckMate 017
SQ NSCLC1

HR=0.59 (95% CI: 0.44, 0.79),
\(P=0.00025\)

1-yr OS rate=42%

Number of Patients at Risk

<table>
<thead>
<tr>
<th>Nivolumab</th>
<th>135</th>
<th>113</th>
<th>86</th>
<th>69</th>
<th>52</th>
<th>31</th>
<th>15</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Docetaxel</td>
<td>137</td>
<td>103</td>
<td>68</td>
<td>45</td>
<td>30</td>
<td>14</td>
<td>7</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

CheckMate 057
Non-SQ NSCLC2

HR=0.73 (96% CI: 0.59, 0.89);
\(P=0.0015\)

1-yr OS rate=51%

Number of Patients at Risk

<table>
<thead>
<tr>
<th>Nivolumab</th>
<th>292</th>
<th>232</th>
<th>194</th>
<th>169</th>
<th>146</th>
<th>123</th>
<th>62</th>
<th>32</th>
<th>9</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Docetaxel</td>
<td>290</td>
<td>244</td>
<td>194</td>
<td>150</td>
<td>111</td>
<td>88</td>
<td>34</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Previously presented at ASCO 2015 (Abstracts 8009 and LBA109).
1. Spigel DR et al. ASCO 2015. Abstract 8009
2. Paz-Ares LG et al. ASCO 2015. LBA109
ORR CheckMate 017 & 057

CheckMate 017

- Nivolumab: ORR 20%
- Docetaxel: 33% (4 of 12 patients with response)

CheckMate 057

- ORR 19%
- 52% (29 of 56 patients with ongoing response)
- 14% (5 of 36 patients with ongoing response)

Horn et al. ECC 2015; Reckamp et al. World Lung Conference 2015.
Clinical Development of Inhibitors of PD-1 Immune Checkpoint

<table>
<thead>
<tr>
<th>Target</th>
<th>Agent</th>
<th>Molecule</th>
<th>Company</th>
<th>Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD-1</td>
<td>Nivolumab-BMS-936558</td>
<td>Fully human IgG4 mAb</td>
<td>Bristol-Myers Squibb</td>
<td>Phase II, III multiple tumors</td>
</tr>
<tr>
<td></td>
<td>Pidilizumab CT-011</td>
<td>Humanized IgG1 mAb</td>
<td>CureTech</td>
<td>Phase II multiple tumors</td>
</tr>
<tr>
<td></td>
<td>Keytruda Pembrolizumab</td>
<td>Humanized IgG4 mAb</td>
<td>Merck</td>
<td>Phase I-II</td>
</tr>
<tr>
<td></td>
<td>AMP-224</td>
<td>Recombinant PD-L2-Fc fusion protein</td>
<td>GlaxoSmithKline</td>
<td>Phase I</td>
</tr>
<tr>
<td>PD-L1</td>
<td>Avelumab</td>
<td>Fully human IgG4 mAb</td>
<td>EMD Serono</td>
<td>Phase I</td>
</tr>
<tr>
<td></td>
<td>Durvalumab</td>
<td>Engineered human IgG1 mAb</td>
<td>MedImmune</td>
<td>Phase I</td>
</tr>
<tr>
<td></td>
<td>Atezolizumab</td>
<td>Engineered human IgG1 mAb</td>
<td>Genentech</td>
<td>Phase I-II</td>
</tr>
</tbody>
</table>

Adapted from Dr. J. Brahmer ASCO 2013
Association of PD-L1 Expression With Efficacy

• Assessed in purposefully collected tumour samples by a clinical-trial IHC assay (Dako) with the 22C3 antibody (Merck)
• Samples scored as the percentage of tumour cells with membranous PD-L1 staining—tumour proportion score or TPS

Keynote 010

Patients
- Advanced NSCLC
- Confirmed PD after ≥2 cycles of platinum-doublet chemotherapy\(^a\)
- **PD-L1 TPS ≥1%**
- ECOG PS 0-1
- No active brain metastases
- No serious autoimmune disease
- No ILD or pneumonitis requiring systemic steroids

End points in the total population and TPS ≥50% stratum
- Primary: PFS and OS
- Secondary: ORR, duration of response, safety

Stratification factors:
- ECOG PS (0 vs 1)
- Region (East Asia vs non-East Asia)
- PD-L1 status\(^b\) (TPS ≥50% vs 1%-49%)

R 1:1:1

Pembrolizumab
- 2 mg/kg IV Q3W for 24 months
- 10 mg/kg IV Q3W for 24 months

Docetaxel
- 75 mg/m\(^2\) Q3W per local guidelines\(^c\)
Duration of Response

PD-L1 TPS ≥1%

<table>
<thead>
<tr>
<th>Treatment Arm</th>
<th>Median (range), mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembro 2 mg/kg</td>
<td>NR (1+ to 20+)</td>
</tr>
<tr>
<td>Pembro 10 mg/kg</td>
<td>NR (2+ to 18+)</td>
</tr>
<tr>
<td>Docetaxel</td>
<td>6 (1+ to 9+)</td>
</tr>
</tbody>
</table>

PD-L1 TPS ≥50%

<table>
<thead>
<tr>
<th>Treatment Arm</th>
<th>Median (range), mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembro 2 mg/kg</td>
<td>NR (1+ to 17+)</td>
</tr>
<tr>
<td>Pembro 10 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Docetaxel</td>
<td>8 (2+ to 9+)</td>
</tr>
</tbody>
</table>

Herbst et al. ESMO Asia 2015.
Keynote 010: Overall Survival

OS, PD-L1 TPS ≥1% (Total Population)

<table>
<thead>
<tr>
<th>Treatment Arm</th>
<th>Median (95% CI), mo</th>
<th>Rate at 1 y (%)</th>
<th>HR* (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembro 2 mg/kg</td>
<td>16.4 (9.4-11.9)</td>
<td>43.2%</td>
<td>0.71 (0.58-0.88)</td>
<td>0.0008</td>
</tr>
<tr>
<td>Pembro 10 mg/kg</td>
<td>12.7 (10.0-17.3)</td>
<td>52.3%</td>
<td>0.61 (0.49-0.75)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Docetaxel</td>
<td>8.5 (7.5-8.8)</td>
<td>34.6%</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

2 mg: 10.4 vs 8.5 HR .71 p<0.0008

OS, PD-L1 TPS ≥50% Stratum

<table>
<thead>
<tr>
<th>Treatment Arm</th>
<th>Median (95% CI), mo</th>
<th>HR* (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembro 2 mg/kg</td>
<td>14.9 (10.4-NR)</td>
<td>0.54 (0.38-0.71)</td>
<td>0.0002</td>
</tr>
<tr>
<td>Pembro 10 mg/kg</td>
<td>17.3 (11.8-NR)</td>
<td>0.50 (0.36-0.70)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Docetaxel</td>
<td>8.2 (6.4-10.7)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

2 mg: 14.9 vs 8.2 HR .54 p<0.0002

Herbst et al. ESMO Asia. LBA3.
Clinical Development of Inhibitors of PD-1 Immune Checkpoint

<table>
<thead>
<tr>
<th>Target</th>
<th>Agent</th>
<th>Molecule</th>
<th>Company</th>
<th>Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD-1</td>
<td>Nivolumab-BMS-936558</td>
<td>Fully human IgG4 mAb</td>
<td>Bristol-Myers Squibb</td>
<td>Phase II, III multiple tumors</td>
</tr>
<tr>
<td></td>
<td>Pidilizumab CT-011</td>
<td>Humanized IgG1 mAb</td>
<td>CureTech</td>
<td>Phase II multiple tumors</td>
</tr>
<tr>
<td></td>
<td>Pembrolizumab</td>
<td>Humanized IgG4 mAb</td>
<td>Merck</td>
<td>Phase I-II</td>
</tr>
<tr>
<td></td>
<td>AMP-224</td>
<td>Recombinant PD-L2-Fc fusion protein</td>
<td>GlaxoSmithKline</td>
<td>Phase I</td>
</tr>
<tr>
<td>PD-L1</td>
<td>Avelumab</td>
<td>Fully human IgG4 mAb</td>
<td>EMD Serono</td>
<td>Phase I</td>
</tr>
<tr>
<td></td>
<td>Durvalumab</td>
<td>Engineered human IgG1 mAb</td>
<td>MedImmune</td>
<td>Phase I</td>
</tr>
<tr>
<td></td>
<td>Atezolizumab</td>
<td>Engineered human IgG1 mAb</td>
<td>Genentech</td>
<td>Phase I-II</td>
</tr>
<tr>
<td></td>
<td>Tecentriq</td>
<td>Engineered human IgG1 mAb</td>
<td>Genentech</td>
<td>Phase I-II</td>
</tr>
</tbody>
</table>

Adapted from Dr. J. Brahmer ASCO 2013
PHASE III OAK

Locally Advanced or Metastatic NSCLC
- 1-2 prior lines of chemo including at least 1 platinum based
- Any PD-L1 status

N = 1,225 enrolled

Stratification factors
- PD-L1 expression
- Histology
- Prior chemotherapy regimens

Primary Endpoints (first 850 enrolled patients):
- OS in the ITT population
- OS in patients with PD-L1 expression on ≥ 1% TC or IC

Secondary Endpoints: ORR, PFS, DoR, Safety

Atezolizumab 1200 mg IV q3w

Docetaxel 75 mg/m² q3w

PD or loss of clinical benefit

1:1

PD

Q 3WEEK

A prespecified analysis of the first 850 patients provided sufficient power to test the co-primary endpoints of OS in the ITT and TC1/2/3 or IC1/2/3 subgroup (≥ 1% PD-L1 expression).

TC, tumor cells; IC, tumor-infiltrating immune cells.

Barlesi et al, Atezolizumab Phase III OAK Study. http://tago.ca/9Hh
OVERALL SURVIVAL, ITT (N = 850)

HR, 0.73
(95% CI, 0.62, 0.87)
P = 0.0003
Minimum follow up = 19 months

Median 9.6 mo
(95% CI, 8.6, 11.2)

Median 13.8 mo
(95% CI, 11.8, 15.7)
KEYNOTE-024: A Randomised Open-Label Phase III Trial of Pembrolizumab Versus Platinum Based Chemotherapy in 1L Subjects With PD-L1 Strong Metastatic Non-Small Cell Lung Cancer (NCT02142738)

Patients
- Advanced or metastatic NSCLC
- No prior systemic therapy
- No EGFR sensitizing mutation or ALK translocation
- ECOG PS 0 to 1
- PD-L1 TPS ≥50%

Randomize 1:1
N = 300

Pembrolizumab 200 mg IV Q3W
Given until progression, intolerable toxicity, investigator decision, or completion of 35 cycles
Optional Crossover
Investigator choice of chemotherapy for 4-6 cycles
Disease progression

Follow-up for safety (≤90 days)
Follow-up for survival (every 2 months)

ENDPOINT PFS

Stratification by:
- ECOG PS (0 vs 1)
- Geographic region (East Asia vs non-East Asia)
- Histology (squamous vs nonsquamous)

Brahmer et al. WCLC 2015.
Confirmed Objective Response Rate

Δ17%
\[P = 0.0011 \]

Pembrolizumab
- ORR, % (95% CI): 45%
 - n = 63
 - n = 6

Chemotherapy
- ORR, % (95% CI): 28%
 - n = 41
 - n = 1

<table>
<thead>
<tr>
<th></th>
<th>Pembrol Responders</th>
<th>Chemo Responders</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTR, mo median (range)</td>
<td>2.2 (1.4-8.2)</td>
<td>2.2 (1.8-12.2)</td>
</tr>
<tr>
<td>DOR, mo median (range)</td>
<td>NR (1.9+ to 14.5+)</td>
<td>6.3 (2.1+ to 12.6+)</td>
</tr>
</tbody>
</table>

Assessed per RECIST v1.1 by blinded, independent central review.
Data cut-off: May 9, 2016.
Progression-Free Survival

<table>
<thead>
<tr>
<th></th>
<th>Events, n</th>
<th>Median, mo</th>
<th>HR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembro</td>
<td>73</td>
<td>10.3</td>
<td>0.50</td>
<td><0.001</td>
</tr>
<tr>
<td>Chemo</td>
<td>116</td>
<td>6.0</td>
<td>0.37-0.68</td>
<td></td>
</tr>
</tbody>
</table>

Assessed per RECIST v1.1 by blinded, independent central review. Data cut-off: May 9, 2016.

Reck M et al. ESMO 2016. Abstract LBA8_PR
Overall Survival

<table>
<thead>
<tr>
<th></th>
<th>Events, n</th>
<th>Median, mo</th>
<th>HR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembro</td>
<td>44</td>
<td>NR</td>
<td>0.60</td>
<td>0.005</td>
</tr>
<tr>
<td>Chemo</td>
<td>64</td>
<td>NR</td>
<td>(0.41-0.89)</td>
<td></td>
</tr>
</tbody>
</table>

HR 0.6

Data cut-off: May 9, 2016.

Reck M et al. ESMO 2016. Abstract LBA8_PR
Phase 3 CheckMate 026 Study Design: Nivolumab vs Chemotherapy in First-line NSCLC

Key eligibility criteria:
- Stage IV or recurrent NSCLC
- No prior systemic therapy for advanced disease
- No EGFR/ALK mutations sensitive to available targeted inhibitor therapy
- ≥1% PD-L1 expression
- CNS metastases permitted if adequately treated at least 2 weeks prior to randomisation

Nivolumab 3 mg/kg IV Q2W n = 271

Secondary endpoints:
- PFS (≥1% PD-L1+)\(^d\)
- OS
- ORR\(^d\)

Randomise 1:1

Chemotherapy Maximum of 6 cycles n = 270

Tumour scans Q6W until wk 48 then Q12W

Disease progression or unacceptable toxicity

Disease progression

Crossover nivolumab\(^c\) (optional)

Primary endpoint: PFS (≥5% PD-L1+)\(^d\)

\(^a\) Dako 28-8 validated; archival tumour samples obtained ≤6 months before enrollment were permitted; PD-L1 testing was centralised.

\(^b\) Squamous: gemcitabine 1250 mg/m\(^2\) + cisplatin 75 mg/m\(^2\); gemcitabine 1000 mg/m\(^2\) + carboplatin AUC 5; paclitaxel 200 mg/m\(^2\) + carboplatin AUC 6; Non-squamous: pemetrexed 500 mg/m\(^2\) + cisplatin 75 mg/m\(^2\); pemetrexed 500 mg/m\(^2\) + carboplatin AUC 6; option for pemetrexed maintenance therapy.

\(^c\) Permitted if crossover eligibility criteria met, including progression confirmed by independent radiology review.

\(^d\) Tumour response assessment for PFS and ORR per RECIST v1.1 as determined by independent central review. Socinski M et al. ESMO 2016. Abstract LBA7.PR
Summary of Response (≥5% PD-L1+)

CheckMate 026: Nivolumab vs Chemotherapy in First-line NSCLC

<table>
<thead>
<tr>
<th></th>
<th>Nivolumab (n=211)</th>
<th>Chemotherapy (n=212)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR, % (95% CI)</td>
<td>26.1 (20.3, 32.5)</td>
<td>33.5 (27.2, 40.3)</td>
</tr>
<tr>
<td>Best overall response, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete response</td>
<td>1.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Partial response</td>
<td>24.2</td>
<td>33.0</td>
</tr>
<tr>
<td>Stable disease</td>
<td>38.4</td>
<td>47.2</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>27.5</td>
<td>9.9</td>
</tr>
<tr>
<td>Could not be determined</td>
<td>8.1</td>
<td>9.4</td>
</tr>
<tr>
<td>Median time to response, months (range)</td>
<td>2.8 (1.2, 13.2)</td>
<td>2.6 (1.2, 9.8)</td>
</tr>
<tr>
<td>Median duration of response, months (95% CI)</td>
<td>12.1 (8.8, NE)</td>
<td>5.7 (4.2, 8.5)</td>
</tr>
</tbody>
</table>

Socinski M et al. ESMO 2016. Abstract LBA7_PR
Primary Endpoint (PFS per IRRC in ≥5% PD-L1+)
CheckMate 026: Nivolumab vs Chemotherapy in First-line NSCLC

- **Nivolumab**
 - No. of patients at risk: 211
 - Median PFS, months: 4.2 (95% CI: 3.0, 5.6)
 - 1-year PFS rate, %: 23.6
 - HR = 1.15 (95% CI: 0.91, 1.45), P = 0.2511

- **Chemotherapy**
 - No. of patients at risk: 212
 - Median PFS, months: 5.9 (95% CI: 5.4, 6.9)
 - 1-year PFS rate, %: 23.2

- **All randomised patients (≥1% PD-L1+): HR = 1.17 (95% CI: 0.95, 1.43)**
OS (≥5% PD-L1+)
CheckMate 026: Nivolumab vs Chemotherapy in First-line NSCLC

Socinski M et al. ESMO 2016. Abstract LBA7_PR
Summary: Immunotherapy

• Current
 – Second-Line Nivolumab 3 mg/kg q 2 w
 – Second line Atezolizumab 200 mg IV q 3 w
 – Second-Line PDL1 >1% Pembrolizumab 2 mg/kg q 3 w

• Advances
 – First-Line PDL1 >50% Pembrolizumab 200 mg q 3 w
Advanced NSCLC: EGFR and ALK Negative

1st Line: Pembrolizumab 2 mg/kg q 3 week

2nd Line: Platinum doublet (Pem/gem based)

3rd Line: Afatinib/Erlotinib, Docetaxel +/- Nintendanib, Docetaxel +/- Ramicirumab,

4th Line: whatever has not been used previously

PDL-1 testing

PDL-1 > 50%
- Pembrolizumab 2 mg/kg q 3 week

PDL-1 < 50%
- Platinum doublet (Pem/gem based)

PDL-1 > 1-49%
- Pembrolizumab 2 mg/kg q 3 week

PDL-1 < 1%
- Atezolizumab 1200 mg IV q3week

Non Squamous/Squamous

PDL-1 testing

PDL-1 > 50%
- Pembrolizumab 2 mg/kg q 3 week

PDL-1 < 50%
- Platinum doublet (Pem/gem based)

Platinum doublet
- Pemexrexed
- Non squamous

PDL-1 testing

PDL-1 > 1-49%
- Pembrolizumab 2 mg/kg q 3 week

PDL-1 < 1%
- Atezolizumab 1200 mg IV q3week

Non squamous

PDL-1 testing

PDL-1 > 50%
- Pembrolizumab 2 mg/kg q 3 week

PDL-1 < 50%
- Platinum doublet (Pem/gem based)

Platinum doublet
- Pemexrexed
- Non squamous

PDL-1 testing

PDL-1 > 1-49%
- Pembrolizumab 2 mg/kg q 3 week

PDL-1 < 1%
- Atezolizumab 1200 mg IV q3week

Non squamous

PDL-1 testing

PDL-1 > 50%
- Pembrolizumab 2 mg/kg q 3 week

PDL-1 < 50%
- Platinum doublet (Pem/gem based)

Platinum doublet
- Pemexrexed
- Non squamous

PDL-1 testing

PDL-1 > 1-49%
- Pembrolizumab 2 mg/kg q 3 week

PDL-1 < 1%
- Atezolizumab 1200 mg IV q3week

Non squamous
Complicated
State of the Art: NSCLC 2016

• Look for a Driver Mutation
 – EGFR
 ▪ Gefitinib, erlotinib, afatinib
 ▪ 3rd-generation osimertinib
 – ALK
 ▪ Crizotinib, ceritinib, alectinib, brigatinib, lorlatinib

• Wildtype
 ▪ Chemotherapy Never Forget

• Immune checkpoint inhibitors
 ▪ Moving into first line
 ▪ Evolving PDL1 biomarker
Conclusion

State of the Art 2016:
Making Lung Cancer a Chronic Disease

Thank you