Phase I, first-in-human trial evaluating BI 1387446 (STING agonist) alone and in combination with ezabenlimab (BI 754091; anti-PD-1) in solid tumors

Kevin Harrington1, Eileen Parkes2, Jared Weiss3, Mathew Ingham4, Andreas Cervantes5, Emiliano Calvo6, Ute Klinkhardt7, Patricia Sikken7, Michael Schmohl7, Elena Garralda8

1The Institute of Cancer Research/Royal Marsden NIHR Biomedical Research Centre, London, United Kingdom; 2Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom; 3Division of Hematology, Oncology, New York Presbyterian Hospital/Columbia University Medical Center, New York, NY, United States; 4Department of Medical Oncology, Biomolecular Research Institute (CIBER), University of Valencia, Valencia, Spain; 5STING Madrid CDCOC, Centro Integral Oncológico Clara Campú, Madrid, Spain; 6Boehringer Ingelheim International GmbH, Ingelheim, Germany; 7Medical Oncology Department, Vall d’Hebron University Hospital and Institute of Oncology, Universitat Autònoma de Barcelona, Barcelona, Spain;

Introduction

• Activation of the STING pathway in intratumoral immune cells leads to increased type I interferon production, promoting recruitment and priming of T cells against tumor antigens, and providing anti-tumor activity.
• BI 1387446 potently and highly selectively activates the STING pathway (Figure 1).

Intratumoral administration of STING agonists has resulted in notable therapeutic activity in animal models:
• Intratumoral administration of BI 1387446 resulted in dose-dependent local tumor control and induction of immunological memory:
 - Delay in tumor growth was seen in non-injected lesions, indicative of an abscopal effect
 - Systemic anti-tumor effect was further enhanced with PD-1 inhibition
• Ezabenlimab (BI 754091) is a humanized IgG4 anti-PD-1 monoclonal antibody
 - IgG4, immunoglobulin G4; PD-1, programmed cell death protein-1; STING, stimulator of interferon genes

Study design

• First-in-human, Phase I, open-label, multicenter trial (NCT04147234)
 - The study will consist of two arms: Arm A and Arm B (with a potential third arm: Arm C)
 - Arm B will open at the starting dose level once the starting dose level in Arm A is considered safe by the SMC; Arm C may open at the starting dose level (or higher) once this dose level is considered safe in Arm B

Study uses a Bayesian logistic regression model with overdose control to investigate a range of dose levels

Objectives and inclusion/exclusion criteria

• To characterize safety and determine the MTD for BI 1387446 and ezabenlimab

Key Inclusion criteria

- Adult patients (≥18 years of age)
- Diagnosis of advanced, unresectable and/or metastatic malignant solid tumor and indication for treatment
- Patient must have exhausted established treatment options known to meaningfully prolong survival
- ≥1 Tumor lesion suitable for injection
- ECOG PS 0/1

Key exclusion criteria

- History or evidence of active, non-tumor-related autoimmune disease, except for endocrinopathies
- History or evidence of pneumonitis related to prior immunotherapy
- Presence of other active invasive cancers other than the one treated in this trial within 5 years prior to enrollment

Endpoints and assessments

- Number of patients with DLTs in the MTD evaluation period
- Best percentage change from baseline in size of target lesions
- Best percentage change from baseline in size of injected lesions
- OR, objective response rate
- RECIST Response Evaluation Criteria in Solid Tumors

Outcomes

• The study of biomarkers (in plasma, blood and tumor samples) will be hypothesis-generating and will substantially contribute to the understanding of the BI 1387446 mode of action (additional content can be accessed via the QR code)

The trial is currently open for recruitment in six sites in Europe and the USA

As of February 2021, 10 patients have been treated

Presented at the American Association for Cancer Research (AACR) Annual Meeting Virtual Format 2021, April 10–15, 2021

This study was funded by Boehringer Ingelheim. The authors were fully responsible for all content and editorial decisions, were involved in all stages of the paper development and have approved the final version.

Medical writing support for the development of this poster, under the direction of the authors, was provided by Steven Kikston, of Ashfield MedComm, an Ashfield Health company, and funded by Boehringer Ingelheim

References

Studies

- As of February 2021, recruitment for the trial is ongoing, and 10 patients have been treated

The trial uses a Bayesian logistic regression model with overdose control to investigate a range of dose levels

Key points

- BI 1387446 administered intratumorally into superficial lesions
- BI 1387446 administered intratumorally into superficial lesions, in combination with ezabenlimab (240 mg q3w) IV
- BI 1387446 administered intratumorally into deep/visceral lesions
- BI 1387446 administered intratumorally into superficial lesions, in combination with ezabenlimab (240 mg q3w) IV

Abbreviations

- RP2D, recommended phase 2 dose
- SMC, Safety Monitoring Committee

Figure 1: Intratumoral/intracystic administration of BI 1387446 in solid tumors

• Tumor associated immune cells
- Tumor cell
- Tumor necrosis
- Eczematized
- Fibrotic
- Non-inflamed tumor microenvironment
- T-cell-inflamed tumor microenvironment
- Tumor associated immune cells

Tumor
Non-inflamed tumor microenvironment
Tumor associated immune cells
Ezabenlimab
Inflammation
Ezabenlimab
Tumor
Non-inflamed tumor microenvironment
Tumor associated immune cells
Ezabenlimab
Inflammation
Ezabenlimab
Tumor
Non-inflamed tumor microenvironment
Tumor associated immune cells
Ezabenlimab
Inflammation
Ezabenlimab
Tumor
Non-inflamed tumor microenvironment
Tumor associated immune cells
Ezabenlimab
Inflammation
Ezabenlimab
Tumor
Non-inflamed tumor microenvironment
Tumor associated immune cells
Ezabenlimab
Inflammation
Ezabenlimab
Tumor
Non-inflamed tumor microenvironment
Tumor associated immune cells
Ezabenlimab
Inflammation
Ezabenlimab
Tumor
Non-inflamed tumor microenvironment
Tumor associated immune cells
Ezabenlimab
Inflammation
Ezabenlimab

• CD8+ T cells and mast cells infiltrate lesions, indicative of an abscopal effect

• Tumor associated immune cells
- Tumor cell
- Tumor necrosis
- Tumor associated immune cells

• BI 1387446 administered intratumorally into superficial lesions
• BI 1387446 administered intratumorally into superficial lesions, in combination with ezabenlimab (240 mg q3w) IV

• BI 1387446 administered intratumorally into deep/visceral lesions
• BI 1387446 administered intratumorally into deep/visceral lesions, in combination with ezabenlimab (240 mg q3w) IV

• BI 1387446 administered intratumorally into superficial lesions
• BI 1387446 administered intratumorally into superficial lesions, in combination with ezabenlimab (240 mg q3w) IV

• BI 1387446 administered intratumorally into deep/visceral lesions
• BI 1387446 administered intratumorally into deep/visceral lesions, in combination with ezabenlimab (240 mg q3w) IV

• BI 1387446 administered intratumorally into superficial lesions
• BI 1387446 administered intratumorally into superficial lesions, in combination with ezabenlimab (240 mg q3w) IV

• BI 1387446 administered intratumorally into deep/visceral lesions
• BI 1387446 administered intratumorally into deep/visceral lesions, in combination with ezabenlimab (240 mg q3w) IV

• BI 1387446 administered intratumorally into superficial lesions
• BI 1387446 administered intratumorally into superficial lesions, in combination with ezabenlimab (240 mg q3w) IV

• BI 1387446 administered intratumorally into deep/visceral lesions
• BI 1387446 administered intratumorally into deep/visceral lesions, in combination with ezabenlimab (240 mg q3w) IV

Figure 1: Intratumoral/intracystic administration of BI 1387446 in solid tumors

Scan the QR code for an electronic copy of the poster and supplementary content

*Corresponding author email address: Kevin.Harrington@icr.ac.uk

11
10
9
8
7
6
5
4
3
2
1
0