Background and rationale

Activating mutations of KRAS drive many types of cancer, including NSCLC.\(^6\) Activation of KRAS relies on guanine nucleotide exchange factors, such as SOS1, to mediate exchange of GDP for GTP, hindering activation of KRAS proteins.\(^1\) Preclinical studies demonstrated cytostatic effects for BI 1701963 in cancer cells with an activated KRAS pathway, and combination with a MEK inhibitor resulted in a more pronounced effect.\(^2\) BI 1701963 is a small-molecule protein–protein interaction inhibitor that prevents the interaction between KRAS and SOS1, inhibiting binding of SOS1 to RAS–GDP, thereby hindering activation of KRAS proteins.\(^3\) BI 1701963 in cancer cells with an activated KRAS pathway, and combination with a MEK inhibitor resulted in a more pronounced effect.\(^4\) BI 1701963 dose will be escalated until the MTD, or a max. of 2 mg QD or until an MTD dose causing confirmed as safe.\(^5\) The first patient was recruited in November 2019.\(^6\)

Endpoints and assessments

Endpoints

Primary: MTD, DLTs

Secondary: PK, OR, PFS rate at 6 months, Grade ≥3 TRAEs

Current status

As of February 11th, 2020, three patients have been treated

Key points

Objectives

- To determine the MTD and/or RP2D of BI 1701963 as a monotherapy and in combination with trametinib
- To evaluate safety, tolerability, pharmacokinetics, pharmacodynamics, and preliminary efficacy

Study design

- Multicenter, open-label, first-in-human dose escalation and expansion trial

Endpoints

Primary: MTD, DLTs

Secondary: PK, OR, PFS rate at 6 months, Grade ≥3 TRAEs

Current status

As of February 11th, 2020, three patients have been treated

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission

Scan the QR code for an electronic copy of the poster and supplementary content

Presented at the American Society of Clinical Oncology Congress (ASCO) Annual Meeting, Virtual Format, May 29-31, 2020

This study was funded by Boehringer Ingelheim. The authors were fully responsible for all content and editorial decisions, were involved at all stages of paper development and have approved the final version.

Medical writing assistance, supported financially by Boehringer Ingelheim, was provided by Hannah Simmons, of GeoMed, an Ashfield company, part of UDG Healthcare plc, during the development of this poster.

As of February 11th, 2020, three patients have been treated

Patients

Key inclusion criteria

- Aged ≥18 years
- Tumors with activating KRAS mutations
- ≥1 evaluable lesion (RECIST v1.1)
- Pharmacokinetic parameters include C\(_{\text{max}}\), area under the concentration-time curve in plasma over the time interval from 0 to the last quantifiable time point for the for the trial drugs; C\(_{\text{AUC}}\), maximum measured plasma concentration of the trial drugs; CR, complete response; OR, objective response; PR, partial response; PFS, progression-free survival; TRAEs, treatment-related adverse events

Key exclusion criteria

- Previous RAS, MAPK, or KRAS targeted therapies
- Retinal vein occlusion
- Retinal pigment epithelial detachment
- Decreased cardiac function

Endpoints and assessments

Endpoints

Primary

- MTD: number of patients with DLTs during Cycle 1

Secondary

- Pharmacokinetics, number of patients with Grade ≥3 TRAEs

Part A

- Mono: MTD; number of patients with DLTs during Cycle 1

Part B

- Combo: OR (CR + PR)

Part C

- Combo: OR (CR + PR)

Current status

- Target enrollment is approximately 140 patients across all cohorts
- The first patient was recruited in November 2019
- As of February 11th, 2020, three patients have been treated