

## Barbara Melosky, MD, FRCP(C)

University of British Columbia
Vancouver, British Columbia, Canada

Boehringer Ingelheim

ESMO 2019 Industry Satellite Symposium, Barcelona, Spain







### **Disclosures**

 Honoraria: AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lilly, Merck, Novartis, Pfizer







## First- and Second-Generation EGFR TKIs Are Standard in the 1L Treatment of NSCLC Harbouring Common EGFR Mutations

First- and second-generation TKIs demonstrate a longer PFS vs platinum-based chemotherapy across multiple phase III clinical trials

### **Erlotinib**

- EURTAC: 9.7 vs 5.2 mo (HR 0.37; 95% CI, 0.25-0.54; P<0.0001)<sup>1</sup>
- ENSURE: 11.0 vs 5.5 mo (HR 0.34; 95% CI, 0.22-0.51; *P*<0.0001)<sup>2</sup>
- OPTIMAL: 13.1 vs 4.6 mo (HR 0.16; 95% CI, 0.10-0.26; *P*<0.0001)<sup>3</sup>

#### **Gefitinib**

- WJTOG3405: 9.2 vs 6.3 mo (HR 0.489; 95% CI, 0.336-0.710; *P*<0.0001)<sup>4</sup>
- NEJ0002: 10.8 vs 5.4 mo (HR 0.30; 95% CI, 0.22-0.41; P<0.001)<sup>5</sup>
- IPASS: 9.5 vs 6.3 mo (HR 0.48; 95% CI, 0.36-0.64; P<0.001)<sup>6,a</sup>

#### **Afatinib**

- LUX-Lung 3: 13.6 vs 6.9 mo (HR 0.47; 95% CI, 0.34-0.65; P=0.001)<sup>7</sup>
- LUX-Lung 6: 11.0 vs 5.6 mo (HR 0.28; 95% CI, 0.20-0.39; *P*<0.001)<sup>8</sup>







# First-, Second-, and Third-Generation EGFR TKIs Are Not Equal: Efficacy

- Afatinib vs. gefitinib (LUX-Lung 7<sup>a</sup>):
  - Significantly longer PFS [HR, 0.74 (0.57-0.95); P=0.0178], TTF [HR, 0.75; 95% CI, 0.60-0.94; P=.00136], and higher ORR [P=0.002]<sup>1</sup>
- Dacomitinib vs gefitinib (ARCHER 1050b, excluding brain mets)
  - Significantly longer PFS [0.59 (95% CI, 0.47-0.74); P<0.0001]. No significant difference in ORR [P=0.3883]<sup>2,3</sup>
- Osimertinib vs erlotinib/gefitinib (FLAURA<sup>c</sup>)
  - Significantly longer OS [HR, 0.80 (95.05% CI, 0.641-0.997); P=0.0462] and PFS [HR, 0.46 (95% CI, 0.37-0.57); P<0.001] with no significant difference in ORR [P=0.24]<sup>4,5</sup>



<sup>a</sup>LUX-Lung 7 is a randomised, phase IIb trial evaluating afatinib vs. gefitinib for the 1L treatment of patients with EGFR M+ advanced adenocarcinoma of the lung.

<sup>b</sup>ARCHER 1050 is a randomised, phase III trial evaluating dacomitinib vs. gefitinib for the 1L treatment of patients with EGFR M+ advanced NSCLC, excluding patients with CNS metastases.

<sup>c</sup>FLAURA is a randomised, phase III trial evaluating osimertinib vs. erlotinib or gefitinib for the 1L treatment of patients with EGFR M+ advanced NSCLC.

## OS Efficacy of First-Generation and Second-Generation TKIs Is Different in Del19 Mutations

 Data from patients with Del19 (n=1037) and L858R (n=816) mutations were analysed in a pair-wise meta-analysis including studies of afatinib, erlotinib, or gefitinib vs chemotherapy

| Agent     | Study      | Hazard Ratio<br>(95% CI) | Del19                        |                                | Hazard Ratio<br>(95% CI) | L858R                                                    |
|-----------|------------|--------------------------|------------------------------|--------------------------------|--------------------------|----------------------------------------------------------|
| Afatinib  | LUX-Lung 3 | 0.53 (0.36-0.79)         | +                            |                                | 1.30 (0.80-2.11)         | <u>†</u>                                                 |
|           | LUX-Lung 6 | 0.64 (0.44-0.94)         |                              |                                | 1.22 (0.81-1.83)         |                                                          |
|           | Total      | 0.59 (0.45-0.77)         | 0.01 0.1 1 Favours afatinib  | 10 100<br>avours chemotherapy  | 1.25 (0.91-1.71)         | 0.01 0.1 1 10 100 Favours afatinib Favours chemotherapy  |
| Erlotinib | ENSURE     | 0.79 (0.48-1.30)         | - +                          | _                              | 1.05 (0.60-1.84)         | T + 7                                                    |
|           | EURTAC     | 0.94 (0.57-1.54)         | Ţ                            | _                              | 1.00 (0.56-1.79)         | <b>=</b>                                                 |
|           | OPTIMAL    | 1.52 (0.9-2.52)          |                              | _                              | 0.92 (0.55-1.54)         | •                                                        |
|           | Total      | 1.04 (0.71-1.51)         | 0.01 0.1 1 Favours erlotinib | 10 100<br>avours chemotherapy  | 0.98 (0.72-1.35)         | 0.01 0.1 1 10 100 Favours erlotinib Favours chemotherapy |
| Gefitinib | IPASS      | 0.86 (0.61-1.22)         | •                            |                                | 1.40 (0.91-2.15)         |                                                          |
|           | NEJ002     | 0.83 (0.52-1.34)         | 1                            |                                | 0.82 (0.49-1.38)         |                                                          |
|           | WJTOG3405  | 1.19 (0.65-2.18)         |                              |                                | 1.11 (0.60-2.05)         | •                                                        |
|           | Total      | 0.90 (0.70-1.17)         | 0.01 0.1 1 Favours gefitinib | 10 100<br>Favours chemotherapy | 1.11 (0.81-1.54)         | ľ                                                        |





## SPECIAL PATIENT POPULATIONS

## **Tolerability**



# First-, Second-, and Third-Generation EGFR TKIs Are Not Equal: Safety

### Treatment discontinuation rates and common grade ≥3 AEs for secondor third generation TKIs vs First-Generation TKIs<sup>a</sup>

- <u>LUX-Lung 7:</u> Treatment discontinuation rates were 6% for both afatinib and gefitinib<sup>1,2</sup>
  - Most common grade ≥3 AEs for afatinib were diarrhoea (13%) and rash/acne (9%); most common for gefitinib were liver enzyme elevation (9%) and rash/acne (3%)
  - Dose reduction of afatinib in LUX-Lung 7 reduced drug-related AEs without compromising efficacy<sup>3</sup>
- ARCHER 1050: Treatment discontinuation rate was 10% and 7% for dacomitinib and gefitinib, respectively<sup>4</sup>
  - Most common grade ≥3 AEs for dacomitinib were acne (14%), diarrhoea (8%), and paronychia (7%); most common for gefitinib were liver enzyme elevation (12%) and dyspnoea (3%)
- FLAURA: Treatment discontinuation rates were 10% and 14% for osimertinib and 1st-gen TKI, respectively<sup>5</sup>
  - Most common grade ≥3 AEs for osimertinib were diarrhoea (2%) and decreased appetite (2%); most common for 1st-gen TKI were rash/acne (7%) and liver enzyme elevation (13%)







## Molecular Mechanisms of Acquired Resistance to First- and Second-Generation EGFR TKIs

- ≈50%-70% develop a T790M mutation on first- or second-generation TKI<sup>1-7,a</sup>
- Likelihood to acquire T790M is 1.5 fold higher in Del19 compared to L858R<sup>8-11</sup>
- Patients with a Del19 disease have a likelihood to acquire T790M ≈75%<sup>12,13</sup>
- Osimertinib is the SOC for T790M+ acquired resistance to first- and secondgeneration EGFR TKIs: AURA3<sup>14</sup>
  - mPFS: 10.1 vs 4.4 months for osimertinib and platinum/pem, respectively [HR, 0.30 (0.23-0.41) P<0.001]</li>

Mechanisms of Acquired Resistance After Firstgeneration TKI in EGFR-mutant NSCLC (n=155)<sup>1</sup>





<sup>a</sup>Molecular analyses on rebiopsyspecimen.
MET = mesenchymal-epithelial transition.

ESMO 2019, Barcelona, Spain, 29 September 2019

## Molecular Mechanisms of Acquired Resistance to 1L Osimertinib



### FLAURA (liquid biopsy)<sup>1,2</sup>



- In FLAURA, the most frequent resistance mechanisms for osimertinib were MET amplification (15%) and EGFR C797S mutation (7%)<sup>1,2</sup>
- Additional studies have shown that the frequency of histologic transformation after resistance to osimertinib was about 14%<sup>3,4</sup>







## Biopsy or Plasma May Be Used to Determine **EGFR T790M Status**

### Methodologies for ctDNA Detection<sup>1</sup>

Sanger sequencing<sup>1</sup>

Pyrosequencing<sup>1</sup>

Therascreen T790M<sup>6</sup>

NGS<sup>1</sup>

Quantitative-PCR1

COLD-PCR<sup>2</sup>

ARMS<sup>1</sup>

COBAS, Therascreen<sup>3,4</sup> (adapted for ctDNA)

ddPCR<sup>5</sup>

>10% sensitivity; optimal for tumour tissue

10% sensitivity; optimal for tumour tissue

>7% sensitivity; optimal for tumour tissue

2% sensitivity; optimal for tumour tissue

1% sensitivity; optimal for tumour tissue

0.10% sensitivity; optimal for ctDNA

0.10% sensitivity; optimal for tumour tissue

0.10% sensitivity; optimal for ctDNA

0.01% sensitivity; optimal for ctDNA

### ctDNA will be detected in this range

### Tumour DNA Is Shed Into the Circulation (ctDNA)<sup>6</sup>









# Hypothetical Changes in Clonal Composition Over Time Following Treatment With Sequential EGFR TKIs



EGFR common (Del19/L858R) mutation

Minor mutation

Compound mutation

EGFR T790M mutation

Other mutation

- After 1<sup>st</sup>-gen. TKI, tumour clones are heterogenous.
- Broad inhibitory profile of 2<sup>nd</sup>-gen TKIs could delay onset of clonal expansion, resulting in a more homogenous subclone, and delay acquired resistance as with 1<sup>st</sup>-gen. TKIs
- This might be the reason for observed improvements in PFS
- After 3<sup>rd</sup>-gen. TKI, tumour clones are very heterogenous, decreasing availability of targeted therapies



## Overall Survival in Patients Receiving Afatinib Followed by Osimertinib in Acquired T790M+ NSCLC

**GioTag:** Global, retrospective, observational, real-world study on sequential therapy in patients with EGFR M+ advanced NSCLC



Primary outcome; median TTFb with sequential afatinib and osimertinib was **28.1 months** (90% Cl, 26.8-30.3), with 15.6 months (90% CI, 13.8-17.1) time on osimertinib.

17 Q



<sup>&</sup>lt;sup>a</sup>Data cutoff April 2019.

OS = overall survival: TTF = time to treatment failure.

Hochmair et al. Future Oncol. 2019;15:2905.

<sup>&</sup>lt;sup>b</sup>Time on treatment defined as the time from the first dose of afatinib to that of the last dose of osimertinib or death.

# Overall Survival in Patients Receiving Afatinib Followed by Osimertinib in Acquired T790M+ NSCLC

**GioTag:** Global, retrospective, observational, real-world study on sequential therapy in patients with EGFR M+ advanced NSCLC

#### OS Interim Analysis<sup>a</sup>: Del19 Subgroup





<sup>&</sup>lt;sup>a</sup>Data cutoff April 2019.

bTime on treatment defined as the time from the first dose of afatinib to that of the last dose of osimertinib or death.

OS = overall survival; TTF = time to treatment failure.





Median OS, mo (95% CI)

HR (95.05% CI)

| Osimertinib                            | Comparator EGFR-TKI |  |  |  |  |
|----------------------------------------|---------------------|--|--|--|--|
| 38.6                                   | 31.8                |  |  |  |  |
| (34.5, 41.8)                           | (26.6, 36.0)        |  |  |  |  |
| 0.799 (0.641, 0.997); <i>P</i> =0.0462 |                     |  |  |  |  |



## **EGFR TKI 1L Combination Strategies**

- Combination strategies may help overcome resistance mechanisms and enhance the anticancer effect of individual strategies<sup>1</sup>
- Combination strategies with antiangiogenics or chemotherapy have shown encouraging results<sup>2-7</sup>
  - Antiangiogenics
    - Bevacizumab + erlotinib<sup>2-4</sup>
    - Ramucirumab + erlotinib<sup>5</sup>
  - Chemotherapy
    - Gefitinib + carboplatin/pemetrexed<sup>6,7</sup>
- After combination therapy, appropriate subsequent therapy options may need further investigation

