Phase I study of BI 836880, a VEGF/Ang2-blocking nanobody®, as monotherapy and in combination with BI 754091, an anti-PD-1 antibody, in Japanese patients with advanced solid tumors

Kentaro Yamazaki,1 Takafumi Koyama,2 Toshio Shimizu,2 Toshiaki Takahashi,3 Junichiro Watanabe,4 Yuko Tanaka,5 Hiroshi Myobudani,5 Noboru Yamamoto2

1Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan; 2Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan; 3Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan; 4Division of Breast Oncology, Shizuoka Cancer Center, Shizuoka, Japan; 5Medicine Division, Nippon Boehringer Ingelheim Co., Ltd, Tokyo, Japan

Presented at the European Society for Medical Oncology (ESMO) Asia 2019 Congress, Singapore, November 22–24, 2019
Introduction

Role of VEGF/Ang2 in tumor angiogenesis and the tumor microenvironment

• VEGF/VEGFR2 and Ang2/Tie2 signaling have complementary functions in tumor angiogenesis\(^1\)\(^–\)\(^4\)
 – Ang2 interrupts vascular tyrosine protein kinase receptor Tie2 signaling, promoting vessel remodeling and sensitizing it for VEGF-induced sprouting angiogenesis
 – VEGF signaling regulates endothelial cell proliferation and migration, and vessel sprouting
 – Preclinically, inhibition of both pathways is superior to targeting either pathway alone

• VEGF/Ang2 also have distinct immunosuppressive effects on the tumor microenvironment\(^5\),\(^6\)
 – VEGF inhibits dendritic-cell maturation and T-cell function, and promotes the activity of Tregs and MDSCs
 – Ang2 increases recruitment and adhesion of neutrophils and TEMs to the endothelium, and increases their conversion to the M2-like macrophage phenotype (TEMs secrete IL-10, which can promote the expansion of Tregs and inhibition of effector T cells)

Ang2, angiopoietin-2; IL-10, interleukin 10; MDSC, myeloid-derived suppressor cell; TEM, Tie2-expressing macrophage; Treg, regulatory T cell; VEGF, vascular endothelial growth factor; VEGFR2, VEGF receptor 2
Introduction (cont’d)

Mechanism of action of BI 836880 and rationale for combining with anti-PD-1 therapy

- BI 836880 is a humanized bispecific nanobody® with two blocking domains that inhibit VEGF and Ang2, and a third domain that binds to albumin, to extend half-life in vivo\(^4\)

- Combining BI 836880 with an anti-PD-1 antibody, such as BI 754091, could enhance the tumor microenvironment to support T-cell-mediated destruction of tumor cells (see Figure)\(^1\)\(^-\)\(^4\)

PD-1, programmed cell death protein-1
Introduction (cont’d)

Immunosuppressive effects of VEGF and Ang2
- Immature dendritic cell
- Treg cell
- MDSC
- CD8+ T cell
- Tumor cell
- M2 tumor-associated macrophage (pro-tumor)

Immunopermissive effects of inhibiting VEGF and Ang2
- Mature dendritic cell
- Dying tumor cell
- M1 tumor-associated macrophage (antitumor)

VEGF
- VEGF
- VEGFR2
- Tie2

BI 836880

BI 754091

Anti-angiogenic normalization of tumor vasculature

Reprogramming of the tumor microenvironment

Adding PD-1 inhibitor drives T-cell-mediated tumor cell death

Figure from: https://www.inoncology.com/compounds/investigational/vegf-ang2-inhibitor. CD, cluster of differentiation
Trial: Study design

- Open-label, dose-escalation, Phase I study (NCT03972150) to assess BI 836880 as monotherapy (Part 1) and in combination with BI 754091 (Part 2) in Japanese patients with advanced solid tumors

- Dose escalation will be guided by Bayesian logistic regression models with overdose control

- Administration will continue until progressive disease, unacceptable toxicity, or other withdrawal criteria
Trial: Study design (cont’d)

Part 1
BI 836880
Starting dose: 360 mg iv q3w
~9
Japanese patients with advanced solid tumors of any type

Part 2
BI 836880 + BI 754091
Starting dose: BI 836880 120 mg iv q3w
Fixed dose: BI 754091 240 mg iv q3w
~15

iv, intravenous; q3w, every 3 weeks
Trial: Endpoints and assessments (Parts 1 and 2)

• Primary objective: determine MTD and/or RP2D of BI 836880 alone (Part 1) and in combination with BI 754091 (Part 2)

• Secondary objective: document safety and tolerability, and characterize PK of BI 836880 alone (Part 1) and in combination with BI 754091 (Part 2)

• Safety will be assessed by a descriptive analysis of incidence and severity of AEs (graded according to CTCAE v5), incidence of DLTs, laboratory data, and results of physical examinations

• Tumor response will be evaluated by the investigator every 2 cycles for the first 6 months, and every 3 cycles thereafter (per RECIST v1.1)

• PK parameters will be evaluated after the 1st, 2nd, and 4th infusion cycle in Part 1, and the 1st and 4th infusion in Part 2

AEs, adverse events; CTCAE, Common Terminology Criteria for Adverse Events; DLTs, dose-limiting toxicities; MTD, maximum tolerated dose; PK, pharmacokinetic(s); RECIST, Response Evaluation Criteria in Solid Tumors; RP2D, recommended Phase II dose
Trial: Endpoints and assessments (Parts 1 and 2; cont’d)

<table>
<thead>
<tr>
<th>Primary endpoints</th>
<th>Secondary and further endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTD</td>
<td>PK parameters</td>
</tr>
<tr>
<td></td>
<td>ORR</td>
</tr>
<tr>
<td></td>
<td>Duration of OR</td>
</tr>
<tr>
<td></td>
<td>Disease control rate</td>
</tr>
<tr>
<td></td>
<td>Immunogenic response</td>
</tr>
<tr>
<td>No. of patients with DLTs*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

During the MTD evaluation period (1st 3-week cycle). OR, objective response; ORR, objective response rate
Trial: Patients

Key inclusion criteria

- Adult patients (≥20 years; no upper age limit)
- Advanced, unresectable, and/or metastatic solid tumor (any type)
- No therapy of proven efficacy available, or not amenable to standard therapies
- ECOG PS ≤1
- Adequate organ function

ECOG PS, Eastern Cooperative Oncology Group performance status
Key exclusion criteria

- Known hypersensitivity to study drugs or their excipients
- History of severe hypersensitivity reactions to other mAbs
- Hematological malignancies
- Known HIV, HBV, or HCV infection
- Interstitial lung disease or pneumonitis within last 5 years
- Significant cardiovascular/cerebrovascular disease, or uncontrolled hypertension
- Severe hemorrhagic or thromboembolic event in past 12 months
- Active brain metastases
- Requirement for full-dose anticoagulation
- Any investigational or anti-tumor treatment within 4 weeks or 5 half-life periods prior to initiation of trial treatment
- Immunosuppressive corticosteroid doses (>10 mg prednisone daily or equivalent) within 4 weeks prior to first dose of study drugs

HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; mAbs, monoclonal antibodies
Current status

- As of October 2019, three patients have been treated in Part 1; Part 2 will start after completion of Part 1
- Two sites are open for recruitment
Key points

• **Rationale:** VEGF/Ang2 inhibition (BI 836880) in combination with anti-PD-1 (BI 754091) is anticipated to enhance the tumor microenvironment to support T-cell-mediated destruction of tumor cells

• **Objectives:** Determine MTD/RP2D of BI 836880 alone and in combination with BI 754091 in Japanese patients with advanced solid tumors

• **Study:** Phase I, open-label, dose-escalation trial

• **Endpoints:** MTD/RP2D of BI 836880 alone and in combination with BI 754091 (primary); safety, PK, anti-tumor activity, and immunogenic response (secondary/further)

• **Status:** Part 1 ongoing (three patients treated); Part 2 will begin after Part 1 completed
References

Acknowledgments and declarations

• This study is funded by Boehringer Ingelheim. The authors were fully responsible for all content and editorial decisions, were involved at all stages of poster development and have approved the final version

• Medical writing assistance, supported financially by Boehringer Ingelheim, was provided by Caroline Allinson of GeoMed, an Ashfield company, part of UDG Healthcare plc, during the development of this poster

• All author disclosure statements can be found in the published abstract

• These materials are for personal use only and may not be reproduced without written permission of the authors and the appropriate copyright permissions