A Phase Ia/Ib, dose-escalation/expansion study of BI 907828 in combination with BI 754091 and BI 754111 in patients with advanced solid tumors

Anthony Tolcher,¹ Navid Hafez,² Noboru Yamamoto,³ Jaehong Park,⁴ Rolf Grempler,⁵ Anthony Lucarelli,⁴ Mehdi Lahmar,⁶ Bushi Wang,⁴ Mrinal Gounder⁷

¹NEXT Oncology, San Antonio, TX, USA; ²Yale Comprehensive Cancer Center, Yale School of Medicine, CT, USA; ³Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan; ⁴Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA; ⁵Boehringer Ingelheim Pharma GmbH & Co. KG, Translational Medicine & Clinical Pharmacology, Biberach an der Riß, Germany; ⁶Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany; ⁷Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
Introduction

• The anti-tumor activity of MDM2-p53 antagonists has been demonstrated through reactivation of the tumor suppressor gene TP53 and, potentially, an additional immune-modulatory effect\(^1\)
 – BI 907828 is a highly potent MDM2-p53 antagonist that has shown anti-tumor activity in preclinical studies\(^1\)
• BI 754091 is an antibody that binds to the PD-1 receptor, blocking the interaction with its ligands\(^2\)
• BI 754111 is an anti-LAG-3 antibody that has been shown to reverse the negative regulation of T-cell activation in preclinical models\(^3\)
• There is evidence that blockade of the PD-1 pathway leads to over-expression of other checkpoint inhibitors, including LAG-3, which may represent an escape pathway; therefore, blocking multiple immune checkpoints could improve patient outcome\(^4\)
• Preclinical studies have demonstrated the synergistic anti-tumor effect of a combination of MDM2-p53 antagonist (BI 907828) with anti-PD-1 (BI 754091) and anti-LAG-3 (BI 754111) antibodies in several syngeneic models\(^5\), driving the rationale for this study

LAG-3, lymphocyte activating 3; MDM2, murine double minute 2; PD-1, programmed cell death protein-1; TP53, tumor protein p53
Non-inflamed tumor microenvironment

Tumor cells

Immuno-modulation

CD8+, cluster of differentiation 8; Treg, regulatory T cells; wt, wild-type
Study design and objectives

Study design
• Open-label, multicenter, dose-escalation Phase Ia/Ib trial (NCT03964233)

Objectives
• To determine the MTD, PK, efficacy, safety, and tolerability of BI 907828 when combined with BI 754091 and BI 754111 in patients with advanced solid tumors

MTD, maximum tolerated dose; PK, pharmacokinetics
Study design and objectives (cont’d)

Phase Ia – dose escalation
BI 907828 + BI 754091 + BI 754111
n=30 evaluable patients

Phase Ib – dose-expansion cohorts

Cohort 1 (n=80; randomized in 2:2:1 ratio)
TP53 wild-type NSCLC

- **Arm A** (n=32)
 - BI 907828 (RDE q3w)
 - BI 754091 (240 mg q3w)
 - BI 754111 (600 mg q3w)

- **Arm B** (n=32)
 - BI 754091 (240 mg q3w)
 - BI 754111 (600 mg q3w)

- **Arm C** (n=16)
 - BI 907828 (RDE)
 - BI 754091 (240 mg)

Cohorts 2, 3, and 4 (single-arm cohorts)

- **Cohort 2** (n=20)
 - TP53 wild-type melanoma
 - BI 907828 (RDE q3w)
 - BI 754091 (240 mg q3w)
 - BI 754111 (600 mg q3w)

- **Cohort 3** (n=10 each)
 - TP53 wild-type liposarcoma and TP53 wild-type UPS
 - BI 907828 (RDE)
 - BI 754091 (240 mg)

- **Cohort 4** (n=20)
 - TP53 wild-type hepatocellular carcinoma

q3w, every 3 weeks; RDE, recommended dose for expansion (determined in Phase Ia); UPS, undifferentiated pleomorphic sarcoma
Patients

Key inclusion criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aged ≥18 years</td>
<td></td>
</tr>
<tr>
<td>Pathologically documented advanced/metastatic solid tumor</td>
<td></td>
</tr>
<tr>
<td>≥1 measurable target lesion (for Phase Ib only)</td>
<td></td>
</tr>
<tr>
<td>Radiologically documented disease progression/relapse during or after all standard of care treatments</td>
<td></td>
</tr>
<tr>
<td>At least one prior treatment</td>
<td></td>
</tr>
<tr>
<td>ECOG PS 0–1</td>
<td></td>
</tr>
<tr>
<td>Adequate organ function</td>
<td></td>
</tr>
<tr>
<td>Life expectancy ≥12 weeks at start of treatment</td>
<td></td>
</tr>
</tbody>
</table>

Key exclusion criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous administration of any MDM2-p53 antagonist or anti-LAG-3 antibody</td>
<td></td>
</tr>
<tr>
<td>Tumor with documented mutation in TP53</td>
<td></td>
</tr>
<tr>
<td>Active or untreated brain metastases (from non-brain tumors)</td>
<td></td>
</tr>
<tr>
<td>Current use of warfarin, factor Xa inhibitors, or direct thrombin inhibitors</td>
<td></td>
</tr>
<tr>
<td>History of bleeding diathesis</td>
<td></td>
</tr>
<tr>
<td>Major surgery within 12 weeks prior to start of study treatment</td>
<td></td>
</tr>
</tbody>
</table>

ECOG PS, Eastern Cooperative Oncology Group performance status
Endpoints and assessments

<table>
<thead>
<tr>
<th>Phase Ia</th>
<th>Phase Ib</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Secondary</td>
</tr>
<tr>
<td>MTD based on DLTs</td>
<td>PK parameters (C_{max} and AUC$_{0-tz}$ of BI 907828, BI 754091 and BI 754111) in Cycle 1</td>
</tr>
<tr>
<td>Primary</td>
<td>Secondary</td>
</tr>
<tr>
<td>Objective response according to RECIST v1.1</td>
<td>Objective response according to iRECIST</td>
</tr>
<tr>
<td>Disease control according to RECIST v1.1 and iRECIST</td>
<td></td>
</tr>
<tr>
<td>PFS*</td>
<td></td>
</tr>
</tbody>
</table>

*In cohort 3, the PFS rate at 12 and 24 weeks will also be assessed.

AUC$_{0-tz}$, area under curve from 0 to the time of the last quantifiable data point; C_{max}, maximum plasma concentration; DLTs, dose-limiting toxicities; PFS, progression-free survival; RECIST, response evaluation criteria in solid tumors.
Study status

First patient enrolled: June 2019

Target enrollment:
Phase Ia: 30 patients

Target enrollment:
Phase Ib: 140 patients
References

Acknowledgments

• This study is funded by Boehringer Ingelheim. The authors were fully responsible for all content and editorial decisions, were involved at all stages of poster development and have approved the final version
• Medical writing assistance, supported financially by Boehringer Ingelheim, was provided by Steven Kirkham of GeoMed, an Ashfield company, part of UDG Healthcare plc, during the development of this poster
• These materials are for personal use only and may not be reproduced without written permission of the authors and the appropriate copyright permissions