NRG1 fusion-positive (NRG1+) tumors: Afatinib as a novel potential treatment option

Stephen V. Liu,1 Michaël Duruisseaux,2 Khaled Tolba,3 Eva Branden,4 Yasushi Goto,5 Benjamin A. Weinberg,1 Robert C. Doebele,6 Christoph Heining,7 Richard F. Schlenk,8 Parneet Cheema,9 Jacques Cadranel,10 Martin R. Jones,11 Alexander E. Drilon,12 Agnieszka Cseh,13 Flavio Solca,13 Janessa J. Laskin14

1Georgetown University Medical Center, Washington, DC, USA; 2Hospices Civils de Lyon Cancer Institute, Université Claude Bernard Lyon 1, Cancer Research Center of Lyon, Lyon, France; 3Oregon Health and Science University, Portland, OR, USA; 4Gävle Hospital, Gävle, Sweden; 5National Cancer Center Hospital, Tokyo, Japan; 6University of Colorado Cancer Center, Aurora, CO, USA; 7National Center for Tumor Diseases Dresden, Dresden, Germany; 8National Center for Tumor Diseases Heidelberg, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; 9William Osler Health System, University of Toronto, Toronto, ON, Canada; 10Assistance Publique Hôpitaux de Paris, Hôpital Tenon and Sorbonne Université, Paris, France; 11Bioinformatic Business Area, QIAGEN Inc., Redwood City, CA, USA; 12Memorial Sloan Kettering Cancer Center, New York, NY, USA; 13Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria; 14University of British Columbia, BC Cancer, Vancouver, BC, Canada

Presented at the Chinese Society of Clinical Oncology (CSCO) Annual Meeting, Xiamen, China, September 18–22, 2019
Introduction

NRG1 gene fusions

• NRG1 is a growth factor that contains an EGF-like domain that binds to ErbB3 or ErbB4, activating ErbB signaling pathways1,2 (Figure 1)

• Clinically actionable NRG1 gene fusions, which increase cell proliferation through ErbB signaling and may function as oncogenic drivers, have been identified in multiple tumors, including NSCLC2–4
 – NRG1 fusions have an estimated overall frequency of \(~0.2\%\) across solid tumors4 and have a reported prevalence of up to 31\% in lung IMA5

• In a study of Chinese patients, NRG1 fusions occurred in 0.36\% of all lung adenocarcinoma cases6
 – This included four CD74-NRG1 fusion-positive cases, one RBPMS-NRG1 fusion-positive case, and one novel ITGB1-NRG1 fusion-positive case

CD74, cluster of differentiation 74; EGF, epidermal growth factor; IMA, invasive mucinous adenocarcinoma; ITGB1, integrin subunit beta 1; NRG1, neuregulin 1; RBPMS, RNA-binding protein with multiple splicing
Afatinib as a novel potential treatment option

• Afatinib is an irreversible pan-ErbB family blocker\(^7\)
• Due to the involvement of ErbB-signaling pathways in NSCLC tumors harboring \(NRG1\) fusions, afatinib may represent a viable therapeutic option in this setting
• This theory is supported by case reports for:
 - One patient with \(SLC3A2-NRG1\) fusion-positive non-mucinous lung adenocarcinoma\(^8\)
 - One patient with \(SDC4-NRG1\) fusion-positive lung adenocarcinoma\(^9\)
 - Two patients with \(CD74-NRG1\) fusion-positive lung IMA\(^8,10\)
 - One patient with \(ATP1B1-NRG1\) fusion-positive pancreatic adenocarcinoma\(^11\)
 - One patient with \(ATP1B1-NRG1\) fusion-positive cholangiocarcinoma\(^12\)
 - One patient with \(CLU-NRG1\) fusion-positive metastatic low-grade serious ovarian carcinoma\(^13\)
 - Two patients with \(APP-NRG1\) and \(ATP1B1-NRG1\) fusion-positive pancreatic ductal adenocarcinoma\(^14\)
• Here we present five new cases of \(NRG1\) fusion-positive tumors treated with afatinib
Introduction (cont’d)

Figure 1. Downstream signaling pathways associated with \textit{NRG1} fusions, and mechanism of action of afatinib

ErbB3 or ErbB4 containing homo or hetero ErbB dimer (i.e. 1/3, 1/4, 2/3, 2/4, 3/4 or 4/4) CD74-\textit{NRG1} fusion

\textit{Afatinib} Pan-ErbB Family Blocker

\textbf{Increased cell proliferation}

AKT, protein kinase B; MAPK, mitogen-activated protein kinase; MEK, mitogen-activated protein kinase kinase; mTOR, mammalian target of rapamycin; PI3K, phosphoinositide 3-kinase
Patient 1: Pan-wild type, non-mucinous, lung adenocarcinoma

- 70-year-old Caucasian female never-smoker, diagnosed in 2004
- Received 14 lines of therapy prior to afatinib, which included chemotherapy, and erlotinib + gefitinib
- Afatinib treatment (40 mg/day) was initiated in February 2015; the patient showed a rapid initial response and continued treatment for 24 months before discontinuation in March 2017 due to PD
- NRG1 fusion was identified in September 2017 by NanoString™ analysis
- Afatinib treatment (30 mg/day) was reinitiated in October 2017, leading to regression in lung condensations
- Discontinued after 3 months due to cough/fever
- Reinitiated in April 2018
- Afatinib discontinued in August 2018 due to PD

Best overall response on afatinib: PR
Duration of response, months: 24

PD, progressive disease; PR, partial response
Patient 2: Metastatic non-mucinous lung adenocarcinoma

- 66-year-old Asian female non-smoker with low body weight (<40 kg), with multiple lung and lymph node metastases at diagnosis (June 2015)
- Received four lines of treatment (cisplatin + pemetrexed; nivolumab; docetaxel + ramucirumab; nivolumab)
- CD74-NRG1 fusion identified, and afatinib treatment (40 mg/day) initiated in December 2017
- The patient had several dose adjustments to a minimum of 20 mg/day due to diarrhea and malaise symptoms
- After 19 months (July 2019), the patient remains on afatinib treatment (20 mg/day) with ongoing PR
Patient 2: Metastatic non-mucinous lung adenocarcinoma (cont’d)

CT imaging of Patient 2

Best overall response on afatinib: PR
Duration of response, months: 19+

Pre-treatment (Dec 2017)
+11 months afatinib (Nov 2018)
Patient 3: Non-mucinous invasive lung adenocarcinoma

- 68-year-old Caucasian male with a 20+ pack-year smoking history, diagnosed in January 2016
- Received two lines of treatment prior to afatinib (cisplatin + pemetrexed, best response: PD; nivolumab, best response: PR)
- \textit{SDC4-NRG1} fusion identified in March 2018, and afatinib treatment (30 mg/day) initiated in August 2018
- The patient had SD for 4 months
- Following this, afatinib was discontinued due to PD
- The patient opted to receive no further treatment and died shortly after in a hospice

SD, stable disease
Patient 3: Non-mucinous invasive lung adenocarcinoma (cont’d)

CT imaging of Patient 3

Pre-afatinib treatment (Jul 2018)

+4 months afatinib (Dec 2018*)

Best overall response on afatinib: SD
Duration of response, months: 4

*Scans were taken early December, before PD
Patient 4: Invasive mucinous lung adenocarcinoma

- 43-year-old Caucasian female non-smoker, diagnosed with lung IMA in August 2016
- Prior to afatinib, she received pemetrexed/cisplatin + bevacizumab, then bevacizumab/pemetrexed in maintenance until July 2017; finally, she received nivolumab until September 2017
- CD74-NRG1 fusion detected by RNA sequencing
- Afatinib treatment (40 mg/day) initiated
- Treatment is ongoing, and the patient has had a major PR
Patient 4: Invasive mucinous lung adenocarcinoma (cont’d)

CT imaging of Patient 4

Pre-treatment (Jul 2017)

+18 months afatinib (Mar 2019)

Best overall response on afatinib: PR

Duration of response, months: 18+

Best overall response on afatinib: PR

Duration of response, months: 18+
Patient 5: Metastatic colorectal cancer

- 69-year-old Caucasian male ex-smoker with KRAS-mutated metastatic colorectal cancer initially presented with GI bleeding in June 2017
- He underwent a right hemicolectomy, and liver and lung metastasectomies after intolerance of FOLFOX and single-agent irinotecan
- Caris® profiling revealed a novel POMK-NRG1 fusion not previously seen in colorectal cancer
- Afatinib treatment (30 mg/day) was initiated in September 2018
- There was metastatic progression after 4 months, treated with localized RT
- Patient remains on afatinib with SD, 9 months from initiation (June 2019)
Patient 5: Metastatic colorectal cancer (cont’d)

CT imaging of Patient 5

<table>
<thead>
<tr>
<th>Pre-treatment (August 2018)</th>
<th>+2 months afatinib (November 2018)</th>
<th>+4 months afatinib (January 2019)</th>
<th>+7 months afatinib (April 2019)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesion 1</td>
<td>PD</td>
<td>SD</td>
<td>Increase in metastatic lesion size; treated with RT</td>
</tr>
<tr>
<td>Lesion 2</td>
<td>PD</td>
<td>SD</td>
<td>SD</td>
</tr>
</tbody>
</table>

Best overall response on afatinib: SD

Duration of response, months: 9+
Key findings and conclusions

• These findings add to a growing body of evidence suggesting afatinib activity in \textit{NRG1} fusion-positive tumors across multiple cancer types
• Mutational testing of patients with solid tumors may help to identify potentially targetable genomic aberrations, such as \textit{NRG1} fusions
• Prospective study is ongoing in the Drug Rediscovery Protocol trial (DRUP; NCT02925234); in addition, the Targeted Agent and Profiling Utilization Registry study (TAPUR; NCT02693535) \textit{NRG1} cohort is in preparation (not yet recruiting)
References

Acknowledgments

• This study is funded by Boehringer Ingelheim. The authors were fully responsible for all content and editorial decisions, were involved at all stages of poster development and have approved the final version.

• Medical writing assistance, supported financially by Boehringer Ingelheim, was provided by Steven Kirkham of GeoMed, an Ashfield company, part of UDG Healthcare plc, during the development of this poster.

• Data were previously presented in part at WCLC 2019 (Duruisseaux M, et al. [poster #P1.14-25]) and ESMO 21st World Congress on Gastrointestinal Cancer (Weinberg BA, et al. [poster #P-291]).

• These materials are for personal use only and may not be reproduced without written permission of the authors and the appropriate copyright permissions.