Afatinib followed by osimertinib in patients with EGFR mutation-positive (EGFRm+) advanced NSCLC: updated data from the GioTag real-world study

Maximilian J. Hochmair,1 Alessandro Morabito,2 Desiree Hao,3 Cheng-Ta Yang,4 Ross Soo,5 James C-H Yang,6 Rasim Gucalp,7 Balazs Halmos,7 Lara Wang,8 Angela Märten,9 Tanja Cufer10

1Department of Respiratory and Critical Care Medicine, and Ludwig Boltzmann Institute of COPD and Respiratory Epidemiology, Vienna, Austria; 2Thoracic Medical Oncology, Istituto Nazionale Tumori, "Fondazione G.Pascale"-IRCCS, Napoli, Italy; 3Tom Baker Cancer Center, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada; 4Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; 5Department of Haematology-Oncology, National University Hospital, Singapore; 6Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei City, Taiwan; 7Department of Oncology, Montefiore/Albert Einstein Cancer Center, New York, USA; 8Boehringer Ingelheim Taiwan Limited, Taipei City, Taiwan; 9Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Germany; 10University Clinic Golnik, University of Ljubljana, Ljubljana, Slovenia

Presented at the 2019 European Society for Medical Oncology (ESMO) congress, Barcelona, Spain, 27 September–1 October 2019
Introduction

- **EGFR TKIs in NSCLC**
 - EGFR TKIs are first-line treatment of choice for patients with *EGFRm+* NSCLC
 - Three generations of EGFR TKI are now widely available

<table>
<thead>
<tr>
<th>First-generation EGFR TKIs</th>
<th>gefitinib</th>
<th>erlotinib</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second-generation EGFR TKIs</td>
<td>afatinib</td>
<td>dacomitinib</td>
</tr>
<tr>
<td>Third-generation EGFR TKI</td>
<td>osimertinib</td>
<td></td>
</tr>
</tbody>
</table>

- Second- (afatinib and dacomitinib)\(^{1,2}\) and third-generation (osimertinib)\(^3\) EGFR TKIs have demonstrated superior PFS over first-generation EGFR TKIs
- However, the best first-line treatment choice and treatment sequence to maximise OS for patients with *EGFRm+* NSCLC is currently unknown

EGFRm+, EGFR mutation-positive; TKI, tyrosine kinase inhibitor
Introduction (cont’d)

Acquired resistance to EGFR TKIs
- The gatekeeper EGFR T790M mutation is a common resistance mechanism to first- and second-generation EGFR TKIs\(^4\)
- Multiple mechanisms for resistance to osimertinib are reported, but no putative resistance mechanism has been detected in ~60% of cases\(^5,6\)

Afatinib

<table>
<thead>
<tr>
<th>T790M-positive acquired resistance in around 60–75% of cases (more common in Del19- than L858R-positive tumours),(^7) facilitating second-line treatment with osimertinib(^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumour cells with activating EGFR mutation</td>
</tr>
<tr>
<td>Afatinib treatment</td>
</tr>
<tr>
<td>Acquired resistance</td>
</tr>
<tr>
<td>Osimertinib</td>
</tr>
</tbody>
</table>

Osimertinib

<table>
<thead>
<tr>
<th>Heterogeneous resistance mechanisms(^5,6): no clear targeted treatments post osimertinib but some agents have shown promise in early phase trials(^8,9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C797S (7% of tumours)(^5)</td>
</tr>
<tr>
<td>MET amplification (15%)(^5)</td>
</tr>
<tr>
<td>Histological transformation (19%)(^6)</td>
</tr>
<tr>
<td>No putative mechanism of resistance (~60%)(^5)</td>
</tr>
</tbody>
</table>

\(\text{T790M cells can be present in small numbers prior to treatment and can also emerge during treatment}\(^10\)
Introduction (cont’d)

Rationale for sequential afatinib and osimertinib

- Most patients progressing on afatinib will be eligible for second-line treatment with osimertinib
- Osimertinib has shown first- and second-line (against T790M) activity\(^3,11\)
- There is currently no standard targeted treatment for patients progressing on osimertinib

Hypothesis: Clinical outcomes with B > A???

Diagram

<table>
<thead>
<tr>
<th>A</th>
<th>1(^{st})-line osimertinib (FLAURA)(^3)</th>
<th>No standard targeted 2(^{nd})-line treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS: 18.9 months</td>
<td>PFS: ???</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>1(^{st})-line afatinib (LUX-Lung 3, 6, 7)(^1,12,13)</th>
<th>T790M</th>
<th>2(^{nd})-line osimertinib (AURA3)(^11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS: 11.0–11.1 months</td>
<td>PFS: 10.1 months</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The GioTag study: original analysis

- GioTag is a global observational study assessing clinical outcomes in patients treated with first-line afatinib and second-line osimertinib after detection of T790M.
Introduction (cont’d)

• In the original analysis of the GioTag study, promising TTF was reported in patients treated with afatinib and sequential osimertinib in everyday clinical practice.\(^{14}\)

• Outcomes were particularly promising in Asian patients and patients with tumours harbouring a Del19 mutation

<table>
<thead>
<tr>
<th>Overall n=204</th>
<th>Median TTF: 27.6 months (90% CI: 25.9–31.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Del19 74% (n=150)</td>
<td>Median TTF: 30.3 months (90% CI: 27.6–44.5)</td>
</tr>
<tr>
<td>Asians 25% (n=50)</td>
<td>Median TTF: 46.7 months (90% CI: 26.8–NR)</td>
</tr>
</tbody>
</table>

• However, in the original analysis of GioTag, OS data were immature

CI, confidence interval; NR, not reached; TTF, time to treatment failure
Objective

- To conduct an updated analysis of OS and TTF of patients treated in the GioTag study
Methods

• The GioTag study is a global observational study across 10 countries (Austria, Canada, Israel, Italy, Japan, Singapore, Slovenia, Spain, Taiwan and the USA)14
• A maximum of 15 consecutive patients were enrolled from each site

The first global, observational study to evaluate outcomes of patients who received first-line afatinib followed by osimertinib (NCT03370770)

• Medical charts (62%) and electronic health records (38%) of consecutive patients treated in real-world practice were retrospectively reviewed

• Patients had $EGFRm+$ (Del19/L858R) TKI-naïve advanced NSCLC and were treated with first-line afatinib, developed T790M-mediated acquired resistance, and received second-line osimertinib treatment

• Primary outcome: TTF
• Exploratory outcome: OS
Methods (cont’d)

• This interim updated analysis (database lock April 2019) was performed when 42% of patients had experienced an OS event. TTF was also reanalysed.
• Updated data were collected from available electronic health records from 94 patients (all from the USA).
• Final analysis, incorporating manual chart reviews from an additional 29 patients, is anticipated in early 2020.
Results

Patients
- Baseline characteristics of the GioTag patients have been described previously14
- Patients who are often excluded from clinical trials e.g. those with ECOG PS of ≥ 2, or those with brain metastases, were included
- Patients had diverse ethnicity; most patients were Caucasian, but the study included Asians and African Americans
- At the start of afatinib treatment, 74% of patients had $EGFR$ Del19-positive tumours
Results (cont’d)

*One patient was excluded from the updated analysis due to reports of conflicting data.

- 203 patients treated with first-line afatinib and second-line osimertinib*
- 15% of patients had ECOG PS of ≥2
- 10% had stable brain metastases
- 59% Caucasian
- 25% Asian
- 9% African American
- 5% Other
- 3% No data

*One patient was excluded from the updated analysis due to reports of conflicting data.
Results (cont’d)

Overall survival
- Median follow-up was 30.3 months (interquartile range 24.0–36.8)
- In this broad patient population, median OS was almost 3.5 years
- 80% of patients were still alive after 2 years
- In patients who received the approved 40 mg/day dose of afatinib, median OS was 45.3 months (90% CI 37.6–47.6)

OS: overall dataset
Results (cont’d)

OS: patients with Del19-positive tumours

- Median OS was almost 4 years in patients with Del19-positive tumours
- In patients with Del19-positive tumours who received afatinib 40 mg/day, median OS was 45.7 months (90% CI 45.3–47.6)
Results (cont’d)

Time to treatment failure
• Median TTF was similar to that reported for the original analysis

TTF: overall dataset

TTF: patients with Del19-positive tumours
Results (cont’d)

Treatment with osimertinib

- Median TTF: 15.6 months (90% CI: 13.8–17.1) with second-line osimertinib
- Median treatment exposure: 16.2 months (range 0.1–27.4) with first-line osimertinib in FLAURA³

- Of note, prior treatment with afatinib did not appear to preclude prolonged TTF with second-line osimertinib (15.6 months)
- In the FLAURA trial, median exposure to osimertinib in a first-line setting was 16.2 months³
Key findings and conclusions

• In this updated analysis of GioTag, median OS was almost 3.5 years, and the 2-year OS rate was 80%
• In patients with Del19-positive tumours, median OS was almost 4 years
• Overall, the median TTF was 28.1 months
• Median TTF with osimertinib was 15.6 months, indicating that substantial clinical benefit with osimertinib can be achieved in a second-line setting following afatinib
• These data, along with high rate of emergence of T790M in patients treated with afatinib, especially in patients with Del19-positive disease (~75%), indicate that sequential afatinib followed by osimertinib is potentially a feasible therapeutic strategy
• Prospective data are required to evaluate the OS of patients treated with different EGFR TKIs, and sequential regimens, in patients with EGFRm+ NSCLC
References

Acknowledgements

• This study was funded by Boehringer Ingelheim. The authors were fully responsible for all content and editorial decisions, were involved at all stages of poster development and have approved the final version.

• Medical writing assistance, supported financially by Boehringer Ingelheim, was provided by Steven Kirkham, of GeoMed, an Ashfield company, part of UDG Healthcare plc, during the development of this poster.

• MJH reports: honoraria (AstraZeneca, Bristol-Myers Squibb, Boehringer Ingelheim, Merck Sharp & Dohme, Pfizer, and Roche) and consulting/advisory roles (Boehringer Ingelheim, Merck Sharp & Dohme, Novartis, and Roche); co-author disclosure statements can be found in the published abstract.

• Data were originally presented in part at WCLC 2019; Hochmair et al. Poster P1.01-118.

• Corresponding author email address: Maximilian.Hochmair@wienkav.at