Afatinib in patients with \textit{EGFR} mutation-positive NSCLC harboring uncommon mutations: overview of clinical data

Oscar Arrieta,1 Pedro De Marchi,2 Nobuyuki Yamamoto,3 Chong-Jen Yu,4 Sai-Hong I Ou,5 Caicun Zhou,6 Martin Paskevicius,7 Angela Märten,8 Yi-Long Wu9

1Instituto Nacional de Cancerología, Mexico City, Mexico; 2Hospital de Câancer de Barretos, Barretos, Brazil; 3Wakayama Medical University, Wakayama, Japan; 4National Taiwan University and National Taiwan University Hospital, Taipei City, Taiwan; 5University of California Irvine School of Medicine, Orange, CA, USA; 6Shanghai Pulmonary Hospital, Shanghai, China; 7Argentina Paraguay y Uruguay Boehringer Ingelheim SA, Argentina; 8Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany; 9Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China

Presented at the Latin America Conference on Lung Cancer (LALCA), Cordoba, Argentina, August 15–18 2018
In patients with adenocarcinoma, the most common type of NSCLC, somatic mutations of EGFR have been reported in:

- ~50% of Asian patients\(^1\),
- 10–15% of Caucasian patients\(^1\), and
- ~26% of Latin American patients\(^2\)

The most frequent EGFR mutations in these populations are the common Del19 and/or L858R mutations\(^3\)

- Exon 19 deletion (Del19) ~45–62%\(^3\)
- Exon 21 L858R insertion (L858R) ~33–40%\(^3\)

~10–15% of tumors harbor uncommon EGFR mutations, comprising mutations in exons 18–21\(^4\)
The current standard of care for first-line treatment of patients with \(\text{EGFR}^{m+} \) NSCLC is an EGFR TKI:\(^5\)
- Reversible first-generation EGFR TKIs: erlotinib\(^6\) and gefitinib\(^7\)
- Irreversible second-generation ErbB family blocker: afatinib\(^8\)
 - In LUX-Lung 7, afatinib demonstrated significantly improved PFS and ORR versus gefitinib in patients with NSCLC harboring common \(\text{EGFR} \) mutations\(^9\)

Other EGFR TKIs are also being assessed as first-line treatment options for patients with Del19/L858R \(\text{EGFR}^{m+} \) NSCLC in Phase III trials:
- Irreversible second-generation ErbB family blocker: dacomitinib (ARCHER 1050\(^{10}\))
- Irreversible third-generation EGFR/T790M inhibitor: osimertinib (FLAURA\(^{11}\))
 - Mature OS data from FLAURA are still not available

\(\text{EGFR}^{m+} \), \(\text{EGFR} \) mutation-positive; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; TKI, tyrosine kinase inhibitor
Despite the expanse of research into the optimal first-line EGFR TKI for patients with NSCLC and common EGFR mutations, and more recently, the optimal treatment sequence,12 there remains a paucity of clinical data on the sensitivity of these EGFR TKIs to uncommon EGFR mutations.
Afatinib reduced cell proliferation and inhibited EGFR phosphorylation at similar concentrations in L858M/L861Q- and L858R-mutant cells

First- and third-generation EGFR TKIs exhibited a decreased capacity to reduce cell proliferation and prevent EGFR phosphorylation in L858M/L861Q cells, compared with L858R-mutant cells

Afatinib has shown similar *in vitro* activity against L861Q and S768I mutations as it has against L858R

- \(\text{IC}_{50} \) values were consistently low across all three cell lines with afatinib\(^\text{13}\)
- \(\text{IC}_{50} \) values were higher and more variable across the cell lines with erlotinib and osimertinib\(^\text{13}\)

<table>
<thead>
<tr>
<th></th>
<th>Afatinib</th>
<th>Erlotinib</th>
<th>Osimertinib</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L858R</td>
<td>L861Q</td>
<td>S768I</td>
</tr>
<tr>
<td></td>
<td>0.2 nM</td>
<td>0.5 nM</td>
<td>0.7 nM</td>
</tr>
</tbody>
</table>

Afatinib reduced cell proliferation and inhibited EGFR phosphorylation at similar concentrations in L858M/L861Q- and L858R-mutant cells\(^\text{14}\)

First- and third-generation EGFR TKIs exhibited a decreased capacity to reduce cell proliferation and prevent EGFR phosphorylation in L858M/L861Q cells, compared with L858R-mutant cells\(^\text{14}\)

\(\text{IC}_{50} \), half maximal inhibitory concentration
Clinical data

Here, we review clinical data for afatinib in $EGFR_m$+ NSCLC harboring uncommon $EGFR$ mutations, including data from the clinical trial and real-world clinical practice settings.

Post-hoc analysis of LUX-Lung 2, 3 and 615

- 75 of 600 patients (13%) treated with afatinib in the three trials had tumors harboring uncommon $EGFR$ mutations.
- Patients were grouped according to mutation status:
 - **Group 1** Point mutations or duplications in exons 18–21, alone or in combination with each other
 - **Group 2** De $novo$ T790M mutation in exon 20, alone or in combination with other mutations
 - **Group 3** Exon 20 insertions
Clinical data (cont’d)

Efficacy outcomes (N=75)

<table>
<thead>
<tr>
<th>Group</th>
<th>Median PFS (95% CI), months</th>
<th>Median OS (95% CI), months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 (n=38)</td>
<td>10.7 (5.6–14.7)</td>
<td>19.4 (16.4–26.9)</td>
</tr>
<tr>
<td>Group 2 (n=14)</td>
<td>2.9 (1.2–8.3)</td>
<td>14.9 (8.1–24.9)</td>
</tr>
<tr>
<td>Group 3 (n=23)</td>
<td>2.7 (1.8–4.2)</td>
<td>9.2 (4.1–14.2)</td>
</tr>
</tbody>
</table>

ORR* by mutation type in Group 1:
- S768I (n=8): 100%
- G719X (n=18): 78%
- L861Q (n=16): 56%

ORR: 71%, ORR: 14%, ORR: 9%
Based on data from the post-hoc analysis of LUX-Lung 2, 3 and 6, the label for afatinib was expanded by the U.S. Food and Drug Administration to include first-line treatment of patients with metastatic NSCLC whose tumors have non-resistant \textit{EGFR} mutations, including \textbf{L861Q}, \textbf{G719X} and \textbf{S768I}, as detected by an FDA-approved test.

Other labels already include non-resistant uncommon \textit{EGFR} mutations; for example, since 2013, approval by the European Medicines Agency has included NSCLC with activating \textit{EGFR} mutations.
Clinical data (cont’d)

Ongoing Phase IIIb open-label, single-arm study: interim analysis

Patients (N=479) received afatinib 40 mg (orally, once daily) until investigator-assessed tumor progression or lack of tolerability

<table>
<thead>
<tr>
<th>Phase IIIb</th>
<th>Patients</th>
<th>Primary endpoint</th>
<th>Other endpoints</th>
<th>ClinicalTrials.gov</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open label, single arm, multicenter</td>
<td>Advanced EGFR+ NSCLC not previously treated with an EGFR TKI; ECOG PS 0–2; Patients with asymptomatic brain metastases† were eligible</td>
<td>Safety assessment; number of SAEs</td>
<td>TTSP,‡ PFS, TRAEs</td>
<td>NCT01953913</td>
</tr>
</tbody>
</table>

ECOG PS, Eastern Cooperative Oncology Group Performance Status; SAEs, serious adverse events; TRAEs, treatment-related adverse events; TTSP, time to symptomatic progression

*Data from larger Asian patient populations will be evaluated in further analyses of this trial

†For at least 4 weeks on stable doses of medication

‡TTSP = Time from first administration of afatinib to the date of first documented clinically significant symptomatic progression that required a change in or stopping of anti-cancer treatment, according to the investigator’s assessment. Clinical symptomatic progression was assessed by the investigator
Clinical data (cont’d)

<table>
<thead>
<tr>
<th>Mutation type</th>
<th>Patients, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFRm+</td>
<td>479 (100)</td>
</tr>
<tr>
<td>Uncommon EGFR mutations§</td>
<td>55 (11)</td>
</tr>
<tr>
<td>T790M</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>Exon 20 insertions and T790M</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>Exon 20 insertions</td>
<td>18 (4)</td>
</tr>
<tr>
<td>Exon 18–21 point mutations/duplications</td>
<td>35 (7)</td>
</tr>
</tbody>
</table>

§Patients with uncommon *EGFR* mutations only (not including patients with tumors harboring both common and uncommon *EGFR* mutations)
Clinical data (cont’d)

PFS in patients with tumors harboring point mutations or duplications in exons 18–21
(equivalent to **Group 1** in LUX-Lung 2, 3 and 6 post-hoc analysis)

![Estimated survival probability (PFS) graph]

- **Afatinib 40 mg**
 - 25th: 5.52
 - Median: 9.49
 - 75th: NE

<table>
<thead>
<tr>
<th>Time since start of treatment (months)</th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number at risk:</td>
<td>35</td>
<td>28</td>
<td>25</td>
<td>15</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Afatinib 40 mg</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

NE, not evaluable
Clinical data (cont’d)

Time to symptomatic progression (TTSP) in patients with tumors harboring point mutations or
duplications in exons 18–21 (equivalent to Group 1 in LUX-Lung 2, 3 and 6 post-hoc analysis)

![Graph showing TTSP](image)

- **Afatinib 40 mg**
 - 25th: 5.68
 - Median: NE
 - 75th: NE

Number at risk:
- Afatinib 40 mg: 35 31 26 19 14 11 8 7 7 6 5 5 5 1 0 0
Clinical data (cont’d)

Retrospective real-world analysis18,19

- 165 patients with recurrent/metastatic NSCLC were treated with first-line afatinib at a single institute in South Korea18

EGFR mutation type18

- Del19 (n=114; 69%)
- L858R (n=37; 22%)
- Uncommon (n=14; 8%)
 - G719X (n=3)
 - G719X + S768I (n=1)
 - Del19 + L747_P753>Q (n=1)
 - Exon 20 insertion (n=1)
 - L861Q (n=3)
 - L858R + H870R (n=1)
 - Del19 + T790M (n=1)
 - L858R + T790M (n=3)
Clinical data (cont’d)

<table>
<thead>
<tr>
<th>EGFR mutation type</th>
<th>Median PFS, months (^{19})</th>
<th>ORR (^{18*})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncommon, excluding T790M (n=10)</td>
<td>Not reached</td>
<td>80%</td>
</tr>
<tr>
<td>Uncommon, including T790M (n=4)</td>
<td>4.7</td>
<td>25%</td>
</tr>
<tr>
<td>Common, Del19 (n=114)</td>
<td>19.1</td>
<td></td>
</tr>
<tr>
<td>Common, L858R (n=37)</td>
<td>15.8</td>
<td></td>
</tr>
</tbody>
</table>

*ORR: partial response + complete response

\(^{18*}\) The ORR was calculated using the last observation carried forward method.
Summary

• Afatinib has pre-clinical and clinical activity in patients with NSCLC harboring certain uncommon *EGFR* mutations.

• ORR, PFS and OS outcomes from a post-hoc analysis of LUX-Lung 2, 3 and 6 showed that afatinib was more active in patients with tumors harboring point mutations or duplications in exons 18–21, compared with *de novo* T790M mutations or exon 20 insertions\(^\text{15}\).

• The activity of afatinib against certain uncommon *EGFR* mutations is being substantiated by studies outside of the randomized controlled trial setting, including in the real-world clinical setting, demonstrating high ORR and long PFS\(^\text{17–19}\).
References

7. U.S. FDA 2015. Iressa. Highlights of prescribing information
Acknowledgements

This study is funded by Boehringer Ingelheim. The authors were fully responsible for all content and editorial decisions, were involved at all stages of poster development and have approved the final version. Medical writing assistance, supported financially by Boehringer Ingelheim, was provided by Christina Jennings of GeoMed, an Ashfield company, part of UDG Healthcare plc, during the development of this poster.

Corresponding author email address: oscararrietaincan@gmail.com

Data were previously presented: Märten A, et al. ELCC 2018; poster #158P