Competing CNS or systemic progression analysis for *EGFR* mutation-positive NSCLC patients on afatinib in LUX-Lung 3, 6, and 7

Diego Kaen,1 James C.-H. Yang,2 Yi-Long Wu,3 Vera Hirsh,4 Kenneth O’Byrne,5 Nobuyuki Yamamoto,6 Sanjay Popat,7 Akihiro Tamiya,8 Angela Märten,9 Martin Schuler10

1Centro Oncologico Riojano Integral (CORI), La Rioja/Argentina; 2National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan; 3Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China; 4McGill University, Montreal, Canada; 5Princess Alexandra Hospital, Brisbane, Australia; 6Wakayama Medical University, Wakayama, Japan; 7The Royal Marsden Hospital, London, United Kingdom; 8Kinki-Chuo Chest Medical Center, Osaka, Japan; 9Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany; 10West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany

Presented at the Latin America Conference on Lung Cancer (LALCA), Cordoba, Argentina, August 15–18 2018
Background

- Central nervous system metastases are a known complication of advanced EGFR mutation-positive NSCLC

\[\sim 25-40\% \text{ of patients with NSCLC develop brain metastases}^{1,2}\]

This rises to \[\sim 40-60\% \text{ in patients with } EGFR \text{ mutations}^{3,4}\]

- The efficacy and optimal integration of EGFR TKIs in the treatment concept of brain metastases is less defined; therefore, LUX-Lung trials investigating the ErbB-family blocker afatinib allowed enrolment of patients with asymptomatic brain metastases

LUX-Lung 3 and 6
- Randomized Phase III studies; first-line afatinib versus platinum-based chemotherapy

LUX-Lung 7
- Randomized Phase IIb study; first-line afatinib versus gefitinib; common EGFR mutations

TKI, tyrosine kinase inhibitor
Background (cont’d)

- In all three studies, the magnitude of PFS improvement with afatinib versus chemotherapy or gefitinib in patients with brain metastases was similar to that observed in patients without brain metastases
 - HR = 0.54, 0.47, and 0.76 in patients with brain metastases, versus 0.48, 0.22, and 0.74 in patients without brain metastases, in LUX-Lung 3, 6, and 7, respectively\(^4,5\)

HR, hazard ratio; PFS, progression-free survival
Background (cont’d)

- In a combined analysis of patients in LUX-Lung 3 and 6, PFS was significantly improved with afatinib versus chemotherapy in patients with asymptomatic brain metastases (Figure 1)\(^4\)

Figure 1\(^\dagger\)

<table>
<thead>
<tr>
<th></th>
<th>Afatinib</th>
<th>Chemotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS, mos</td>
<td>8.21</td>
<td>5.39</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.50 (0.27–0.95)</td>
<td></td>
</tr>
<tr>
<td>(p) value</td>
<td>0.0297</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>0</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>21</th>
<th>24</th>
<th>27</th>
<th>30</th>
<th>33</th>
<th>36</th>
<th>39</th>
<th>42</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number at risk</td>
<td></td>
</tr>
<tr>
<td>Afatinib</td>
<td>48</td>
<td>39</td>
<td>25</td>
<td>19</td>
<td>17</td>
<td>13</td>
<td>11</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>33</td>
<td>16</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^\dagger\)Adapted from Schuler. J Thorac Oncol 2016 (ref. 4) under the terms of the Creative Commons Attribution License (CC BY)
Real-world data

- In a single-center retrospective analysis in Korea (n=165), ORR for afatinib monotherapy was 76%, with 21% CR. PFS data were not significantly different between patients receiving afatinib monotherapy, or afatinib plus surgery or WBRT.

Figure 2‡

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Median PFS, months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afatinib in pts w/o BM</td>
<td>NR</td>
</tr>
<tr>
<td>Afatinib monotherapy in pts with BM</td>
<td>15.7</td>
</tr>
<tr>
<td>Afatinib + gamma knife surgery</td>
<td>15.6</td>
</tr>
<tr>
<td>Afatinib + whole-brain radiotherapy</td>
<td>11.5</td>
</tr>
</tbody>
</table>

BM, brain metastases; CR, complete response; ORR, overall response rate; WBRT, whole-brain radiotherapy

‡Adapted from Kim Y. et al. J Thorac Oncol 2017;12:S2209 [presented at WCLC] (ref. 6) with permission
Real-world data (cont’d)

- In another retrospective review, ORR was similar for patients receiving afatinib monotherapy (82%; n=11) and patients receiving afatinib in combination with WBRT (88%; n=17); TTF and OS were numerically higher for patients on afatinib monotherapy.\(^7\)

OS, overall survival; TTF, time to treatment failure
Objective

• To investigate whether afatinib can prevent CNS progression or metastasis, we performed competing risk analyses for the progression and metastasis pattern in the CNS or non-CNS region in patients with and without brain metastases in LUX-Lung 3, 6, and 7
Methods

- Competing risk analyses were performed in patients with stage IIIB/IV *EGFR* mutation-positive NSCLC who received afatinib 40 mg/day in LUX-Lung 3, 6, and 7.
- Analyses were performed separately for patients with baseline brain metastases and without baseline brain metastases.
- Risk of CNS progression versus non-CNS progression or death was calculated based on the cumulative frequency of the event of interest versus the competing risk event.
Results

Patients with baseline brain metastases (Figure 3):

• 48 patients with baseline brain metastases received afatinib in LUX-Lung 3 and 6
• Median follow-up was 10.3 months
• Cumulative incidence of CNS progression was 39.9% lower than that of non-CNS progression (31.3% versus 52.1%)
• Best CNS response in patients with baseline brain metastases classified as target lesion (n=5): 2 CRs, 1 PR, and 2 SDs
 – PR/CR was achieved by visits 1–2

PD, progressive disease; PR, partial response; SD, stable disease
Results (cont’d)

Figure 3

<table>
<thead>
<tr>
<th>Cumulative incidence</th>
<th>CNS progression</th>
</tr>
</thead>
<tbody>
<tr>
<td>At 6 months, %</td>
<td>15.5</td>
</tr>
<tr>
<td>At 12 months, %</td>
<td>24.5</td>
</tr>
<tr>
<td>At 24 months, %</td>
<td>34.4</td>
</tr>
</tbody>
</table>

Adapted from Girard N. Future Oncol 2018 (ref. 8) under the terms of the Creative Commons Attribution License (BY-NC-ND 4.0)
Results (cont’d)

Patients without baseline brain metastases (Figure 4):

- 485 patients without baseline brain metastases received afatinib in LUX-Lung 3, 6, and 7
- Median follow-up was 13.0 months
- Risk of de novo CNS progression was very low (6.4%) compared with non-CNS progression (78.4%)
Results (cont’d)

Cumulative incidence

<table>
<thead>
<tr>
<th>CNS progression</th>
<th>Cumulative incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>At 6 months, %</td>
<td>1.3</td>
</tr>
<tr>
<td>At 12 months, %</td>
<td>2.6</td>
</tr>
<tr>
<td>At 24 months, %</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Figure 4

Adapted from Girard N. Future Oncol 2018 (ref. 8) under the terms of the Creative Commons Attribution License (BY-NC-ND 4.0)
Conclusions

• These results add to the existing evidence supporting afatinib use in patients with \textit{EGFR} mutation-positive NSCLC and CNS metastases

• Taken together, these results show that afatinib delays the onset/progression of brain metastases
Summary

- Previous findings from the LUX-Lung trials and real-world practice show that afatinib has clinical activity against brain metastases in \(\text{EGFR} \) mutation-positive NSCLC.
- Cumulative incidence of CNS progression was lower than that of non-CNS progression in patients with \(\text{EGFR} \) mutation-positive NSCLC and baseline brain metastases treated with afatinib in LUX-Lung 3 and 6.
- Risk of \textit{de novo} CNS progression in patients with \(\text{EGFR} \) mutation-positive NSCLC treated with afatinib was very low in LUX-Lung 3, 6, and 7.
References

1. Owen S, Souhami L. Front Oncol 2014;4:248
8. Girard N. Future Oncol 2018;14:1117–32

Acknowledgments

This study is funded by Boehringer Ingelheim. The authors were fully responsible for all content and editorial decisions, were involved at all stages of poster development and have approved the final version.

Medical writing assistance, supported financially by Boehringer Ingelheim, was provided by Christina Jennings of GeoMed, an Ashfield company, part of UDG Healthcare plc, during the development of this poster.

Corresponding author email address: dlkaen@me.com
Data were previously presented: Yang J, et al. ELCC 2018; poster #143PD

These materials are for personal use only and may not be reproduced without written permission of the authors and the appropriate copyright permissions