First-in-human Phase I trial of BI 836880, a vascular endothelial growth factor (VEGF)/angiopoietin-2 (Ang-2)-blocking Nanobody®, given every 3 weeks in patients with advanced/metastatic solid tumors

Christophe Le Tourneau,¹ Rainer Claus,²,³ Francesco Ricci,¹ Björn Hackanson,² Christoph Rummelt,³ Oliver Fietz,⁴ Thomas Arnhold,⁵ Dooti Roy,⁴ Zohra Oum’Hamed,⁶ Ralph Fritsch³

¹Institut Curie, Paris, France; ²Augsburg Hospital, Augsburg, Germany; ³University Freiburg Medical Center, Freiburg, Germany; ⁴Boehringer Ingelheim International GmbH, Ridgefield, CT, USA; ⁵Boehringer Ingelheim International GmbH, Biberach, Germany; ⁶Boehringer Ingelheim France S.A.S., Paris, France

Presented at the American Society of Clinical Oncology (ASCO) Annual Meeting, Chicago, IL, USA, June 1–5, 2018
Background

- VEGF and Ang-2 are key angiogenic factors induced by hypoxia and are often overexpressed in cancer1,2
 - Activation of the Ang-2/Tie-2 pathway promotes vascular destabilization, and enables VEGF-induced angiogenesis2
 - Given the crosstalk between the VEGF/VEGFR2 and Ang-2/Tie-2 signaling pathways, it is hypothesized that inhibition of both pathways may be a superior approach compared to targeting either pathway alone4

- BI 836880 is a humanized bispecific Nanobody®
 - A Nanobody is an engineered antibody fragment consisting of one or more variable antibody domains3
 - BI 836880 comprises two single variable domains that inhibit VEGF and Ang-2, and an additional albumin module (ALB11) that extends half-life \textit{in vivo}4
Background (cont’d)

Angiogenesis stimulated by VEGF and Ang-2 (left panel) and inhibited by BI 836880-mediated dual inhibition of the two pathways (right panel).
Background (cont’d)

• BI 836880 has demonstrated pre-clinical activity in cancer models
 – Data from models of pancreatic, lung, renal, ovarian and colon cancer have shown that BI 836880 can potently and selectively neutralize VEGF and Ang-2
• Here, we report the first-in-human Phase I trial of BI 836880 every 3 weeks (Q3W) in patients with advanced/metastatic solid tumors
Methods

Patients with advanced/metastatic solid tumors refractory after standard therapies or for whom no established treatment options were available (Clinicaltrials.gov: NCT02674152)

Received intravenous BI 836880 Q3W
- Starting dose: 40 mg Q3W
- Dose escalation followed a Bayesian logistic regression model with overdose control

Key inclusion and exclusion criteria:

✓ Aged ≥18 years
✓ ECOG PS ≤2
✓ Life expectancy ≥3 months
✓ Recovery from reversible AEs of previous anti-cancer therapies to baseline/grade 1*

✗ Systemic anti-cancer therapy within 28 days/≥5 half lives prior to start of study treatment
✗ Serious concomitant disease
✗ Medical history including: QT prolongation and/or long QT syndrome or prolonged QTcF at baseline; and severe hemorrhagic or thromboembolic events
✗ Uncontrolled hypertension (blood pressure ≥140/≥90 mmHg [with or without medication])

*Except for alopecia (any grade) or sensory peripheral neuropathy (grade ≤2 or not clinically significant)
Methods (cont’d)

Primary endpoint
• To assess the MTD, evaluated based on the number of patients with DLTs in the first 21-day cycle
 – The MTD was considered reached if there was a sufficiently large probability that the true DLT rate was in the target interval of 16–33%

Secondary endpoints
• TRAEs leading to dose reduction/discontinuation
• Exposure measures (AUC\(_{0-tz}\)) after the first dose
• Disposition kinetic measures (t\(_{1/2}\)) after the first dose

Further endpoint
• Best overall response

Data cut-off for this analysis was 02 May 2018
AUC\(_{0-tz}\), area under the plasma concentration–time curve of the analyte over the time interval from 0 up to the last quantifiable data point; DLT, dose-limiting toxicity; MTD, maximum tolerated dose; t\(_{1/2}\), terminal half life; TRAE, treatment-related AE
Results

Baseline characteristics of 29 patients treated with BI 836880

Gender
- Female: 18 (62%)
- Male: 11 (38%)

ECOG PS
- PS 0: 11 (38%)
- PS 1: 18 (62%)
- PS 2: 0 (0%)

Region of primary site
- Pancreas: 6 (21%)
- Breast: 4 (14%)
- Colon/rectum: 2 (7%)
- Eye: 2 (7%)
- Esophagus: 3 (10%)
- Other*: 8 (28%)
- Rhinopharynx/cavum: 2 (7%)
- Thymus: 2 (7%)

Median age, years
- Min.: 28
- Max.: 79

*Anal region, caecum, fossa iliaca left, ovary, proximal jejunum, sigmoid, uterus and unknown (each n=1)
Results (cont’d)

Treatment exposure

- At data cut-off, 2 patients remained on treatment
 - Reasons for treatment discontinuation were:
 PD (n=19); DLT (n=1); other AE or clinical progression (n=4); other (n=3)

*Patients who started the treatment cycle, including those who discontinued treatment before the planned 21-day cycle end. Two patients remain on treatment. PD, progressive disease
Determination of the MTD based on the occurrence of DLTs in Cycle 1

DLT in 1000 mg dose cohort: Grade 3 pulmonary embolism

MTD dose cohort expanded

Total treated at 720 mg, n=17
Most frequent AEs (occurring in ≥15% of patients, by max. CTCAE grade)

- Any AE
- Hypertension
- Asthenia
- Nausea
- Vomiting
- Constipation
- AST increased
- Diarrhea
- Anemia
- Odema peripheral
- Abdominal pain
- Dyspnea
- Urinary tract infection
- Infusion-related reaction
- ALT increased
- Blood bilirubin increased
Results (cont’d)

• TRAEs leading to dose reduction: 0
• TRAEs leading to treatment discontinuation: 2
 – Grade 3 pulmonary embolism, reported as DLT in 1000 mg dose cohort
 – Grade 3 myocarditis
Results (cont’d)

Anti-tumor activity

Minimum increase in SLD from baseline (%)

-100 -80 -60 -40 -20 0 20 40 60 80 100

Subject index sorted by minimum increase (%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Cavum carcinoma
Duration of response: 128 days

Adenocarcinoma of the ovary
Duration of response: 92 days

Breast cancer
Duration of response: 39 days

Best overall response regardless of confirmation
PD: n=6 (21%)
SD: n=13 (45%)
PR: n=3 (10%)
NE: n=7 (24%)

NE, not evaluable; PR, partial response; SD, stable disease; SLD, sum of target lesion diameters
Results (cont’d)

PK and PD analysis of 14 evaluable patients

gMean plasma concentration–time profile after first infusion (Cycle 1)

- BI 836880 plasma kinetics in Cycle 1 seemed to be dose proportional over 40–1000 mg
- The required trough values of 20 mg/L could be achieved at doses ≥720 mg

PD, pharmacodynamic; PK, pharmacokinetic
Results (cont’d)

Dose-normalized C_{max} and $\text{AUC}_{0–504}$ after first infusion (Cycle 1)

$\text{AUC}_{0–504}$, area under the concentration–time curve over the time interval from 0 to 504 hours; C_{max}, maximum measured plasma concentration of BI 836880; C_{trough}, trough plasma concentration
Results (cont’d)

Free systemic VEGF and Ang-2 levels after first infusion (Cycle 1)

Systemic free VEGF was completely depleted (below the LLOQ of 0.1 pM or 0.00274 ngeq/ml) at the lowest dose of 40 mg

- VEGF remained below the LOQ even before the start of the next treatment cycle

LLOQ, lower limit of quantitation; LOQ, limit of quantitation
Results (cont’d)

Free systemic VEGF and Ang-2 levels after first infusion (Cycle 1)

- Systemic free Ang-2 was blocked in a dose-dependent manner.
- Complete inhibition of systemic Ang-2 below the LOQ of 1.4 pM (0.08 ngeq/ml) was achieved at doses ≥360 mg.
 - In these patients, Ang-2 levels remained below LOQ even before the start of the next treatment cycle.
Summary

- The MTD/recommended phase 2 dose of BI 836880 was determined as 720 mg Q3W
- The most frequently observed AEs were (any grade/grade ≥3) hypertension (90%/41%), asthenia (52%/14%) and nausea (45%/3%)
- PK/PD analysis supported BI 836880 720 mg Q3W as the biologically relevant dose
- Early signs of anti-tumor activity were observed
References

Acknowledgments

This study was funded by Boehringer Ingelheim. The authors were fully responsible for all content and editorial decisions, were involved at all stages of poster development, and have approved the final version. Medical writing assistance, supported financially by Boehringer Ingelheim, was provided by Laura Winton, of GeoMed, an Ashfield company, part of UDG Healthcare plc, during the development of this poster.
Corresponding author email address: christophe.letourneau@curie.fr

These materials are for personal use only and may not be reproduced without written permission of the authors and the appropriate copyright permissions