Impact of afatinib dosing on safety and effectiveness in patients with \textit{EGFR} mutation-positive advanced NSCLC in a real-world setting (RealGiDo)

Balazs Halmos,1 Eng-Huat Tan,2 Ross Soo,3 Jacques Cadranel,4 Min Ki Lee,5 Pascal Foucher,6 Te-Chun Hsia,7 Maximilian Hochmair,8 Frank Griesinger,9 Toyoaki Hida,10 Edward S. Kim,11 Barbara Melosky,12 Angela Märten,13 Enric Carcereny14

1Montefiore/Albert Einstein Cancer Center, Bronx, New York, NY, USA; 2National Cancer Centre Singapore, Singapore; 3National University Hospital, Singapore; 4Hôpital Tenon and Sorbonne Université Paris VI, Paris, France; 5Pusan National University Hospital, Pusan National University College of Medicine, Pusan, Republic of Korea; 6CHU Dijon-Bourgogne, Hôpital du Bocage, Dijon, France; 7China Medical University and China Medical University Hospital, Taichung, Taiwan; 8Otto-Wagner-Spital, Vienna, Austria; 9Pius-Hospital and University of Oldenburg, Oldenburg, Germany; 10Aichi Cancer Center Hospital, Nagoya, Japan; 11Levine Cancer Institute, Atrium Health, Charlotte, NC, USA; 12University of British Columbia, Vancouver, BC, Canada; 13Boehringer Ingelheim GmbH & Co. KG, Ingelheim Am Rhein, Germany; 14Catalan Institute of Oncology, Badalona-Hospital Germans Trias i Pujol, Badalona, Spain

Presented at the Clinical Oncology Society of Australia (COSA) Annual Scientific Meeting, Perth, WA, Australia, November 13–15, 2018
Background

- Randomised controlled trials (RCTs) are a trusted standard for assessing safety and efficacy, but may not always reflect real-world experience
 - RCTs generally involve select groups of patients and are set in well-defined, controlled clinical conditions
- In the real-world, patients may be less compliant, and have poorer prognostic factors and/or more co-morbidities
- Further, routine medical practice may differ from that specified in clinical trial protocols
- In the LUX-Lung clinical trials involving patients with EGFR mutation-positive (EGFRm+) NSCLC, the incidence and severity of adverse events was reduced by the use of tolerability-guided dose adjustments, without compromising efficacy\(^1,2\)
- We report findings from the RealGiDo study, which evaluated the impact of afatinib dose adjustment on efficacy and safety in a real-world setting
Methods

Study design and patients

• Non-interventional, observational study

• Conducted at 29 sites across 13 countries worldwide (Austria, Canada, France, Germany, Italy, Japan, South Korea, Mexico, Poland, Singapore, Spain, Taiwan, and United States; NCT02751879)
 – A maximum of 15 patients were enrolled per site

• Retrospective review of medical records from consecutive patients with EGFRm+ (Del19/L858R) tyrosine kinase inhibitor (TKI)-naïve advanced NSCLC who were treated first-line with afatinib within the approved label
 – Patients provided written informed consent where required
 – Patients were excluded if they had been treated in a clinical trial
 – To avoid early censoring and enable collection of mature data, inclusion was restricted to patients with treatment initiation ≥6 months prior to enrollment
 – However, patients who discontinued afatinib before completing 6 months of treatment (e.g. due to toxicity or progressive disease) were included to prevent selection bias
Methods (cont…)

Primary endpoints

Safety
Percentage of patients with ADRs* by severity

Effectiveness
TTF† with afatinib
TTP with afatinib

Secondary endpoints

Percentage of patients receiving a modified starting dose of afatinib
Reasons for modifying the starting dose

*ADR, adverse drug reaction; graded using Common Terminology Criteria for Adverse Events, version 4.0.
†TTF, time to treatment failure; synonymous with time on treatment
TTP, time to progression
Results

• 228 patients were included
• Baseline characteristics were consistent with the pivotal, global, Phase III LUX-Lung 3 trial, with the exception of:
 – More Del19 patients (78% vs 49%)
 – Fewer Asian patients (44% vs 72%)
 – 12% had Eastern Cooperative Oncology Group (ECOG) performance status 2/3 (vs none in LUX-Lung 3)
Results (cont…)

Patient demographics and disease characteristics

<table>
<thead>
<tr>
<th>N (%)</th>
<th>RealGiDo</th>
<th>LUX-Lung 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Any starting dose (n=228)</td>
<td>Starting dose ≤30 mg (n=71)</td>
</tr>
<tr>
<td>Female</td>
<td>138 (60.5)</td>
<td>48 (67.6)</td>
</tr>
<tr>
<td>Median age, yr (range)</td>
<td>67.0 (32–90)</td>
<td>69.0 (35–85)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>96 (42.1)</td>
<td>37 (52.1)</td>
</tr>
<tr>
<td>Asian</td>
<td>100 (43.9)</td>
<td>26 (36.6)</td>
</tr>
<tr>
<td>Stage IV disease</td>
<td>216 (94.7)</td>
<td>66 (93.0)</td>
</tr>
<tr>
<td>ECOG PS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>90 (39.5)</td>
<td>25 (35.2)</td>
</tr>
<tr>
<td>1</td>
<td>102 (44.7)</td>
<td>31 (43.7)</td>
</tr>
<tr>
<td>2/3</td>
<td>27 (11.9)</td>
<td>8 (11.3)</td>
</tr>
</tbody>
</table>

EGFR mutation

<table>
<thead>
<tr>
<th></th>
<th>Del19</th>
<th>L858R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>178 (78.1)</td>
<td>49 (21.5)</td>
</tr>
<tr>
<td></td>
<td>59 (83.1)</td>
<td>12 (16.9)</td>
</tr>
<tr>
<td></td>
<td>117 (75.5)</td>
<td>37 (23.9)</td>
</tr>
<tr>
<td></td>
<td>112 (48.7)</td>
<td>91 (39.6)</td>
</tr>
</tbody>
</table>
Results (cont…)

- 31% of patients received an afatinib starting dose of <40 mg/day; 20% of these patients had dose increases during the study
- The main reason for dose modification was ADRs
- 78% of patients in RealGiDo had a dose modification
- Among patients who received a starting dose of afatinib 40 mg/day and had a dose modification within the first 6 months (n=90), data were consistent with LUX-Lung 3:
 - Most dose reductions occurred within the first 6 months of treatment (86% in RealGiDo and LUX-Lung 3)
 - The rate of dose reductions was numerically higher in RealGiDo (67% RealGiDo vs 53% LUX-Lung 3)
Results (cont…)

Afatinib starting dose in RealGiDo:
- 50 mg: 0.9%
- 40 mg: 0.9%
- 30 mg: 30.3%
- 20 mg: 68.0%
- Other: 6.8%

Reason given for a modified starting dose:
- Previous experience with EGFR TKIs: 15.0%
- Institutional standard: 31.5%
- Investigators decision: 41.1%
- Patient characteristics: 6.8%
- Other: 5.4%
Results (cont…)

Proportion of patients who started on afatinib 40 mg and had a dose reduction within the first 6 months (overall and by patient subgroup): RealGiDo compared with LUX-Lung 3

Patients with dose reductions at any time
Patients with dose reductions within first 6 months

Characteristics of patients with dose reductions

- Male patients
- Female patients
- <65 years
- ≥65 years
- <50 kg
- ≥50 kg
- Caucasian
- Japanese
- Asian
- ECOG PS 0
- ECOG PS 1
- ECOG PS 2
- ECOG PS 3
- Del19
- L858R

Patients with dose reductions (%)

- LUX-Lung 3
- RealGiDo
Safety: comparison to LUX-Lung 3

<table>
<thead>
<tr>
<th></th>
<th>RealGiDo Any starting dose</th>
<th>RealGiDo Starting dose 40 mg</th>
<th>LUX-Lung 3 Starting dose 40 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of patients</td>
<td>228 (100)</td>
<td>155 (100)</td>
<td>229 (100)</td>
</tr>
<tr>
<td>Drug-related adverse event (DRAE)</td>
<td>215 (94.3)</td>
<td>146 (94.2)</td>
<td>229 (100)</td>
</tr>
<tr>
<td>DRAEs grade ≥3</td>
<td>56 (24.6)</td>
<td>44 (28.4)</td>
<td>112 (48.9)</td>
</tr>
<tr>
<td>DRAEs leading to discontinuation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discontinuation due to rash</td>
<td>2 (0.9)</td>
<td>2 (1.3)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Discontinuation due to diarrhea</td>
<td>8 (3.5)</td>
<td>5 (3.2)</td>
<td>3 (1.3)</td>
</tr>
<tr>
<td>Drug-related serious AE</td>
<td>15 (6.6)</td>
<td>8 (5.2)</td>
<td>32 (14.0)</td>
</tr>
<tr>
<td>Most frequent drug-related ADRs/AEs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rash/acne</td>
<td>143 (62.7)</td>
<td>95 (61.3)</td>
<td>204 (89.1)</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>171 (75.0)</td>
<td>120 (77.4)</td>
<td>219 (95.2)</td>
</tr>
<tr>
<td>Paronychia/nail effect</td>
<td>111 (48.7)</td>
<td>73 (47.1)</td>
<td>130 (56.8)</td>
</tr>
<tr>
<td>Stomatitis/mucositis</td>
<td>78 (34.2)</td>
<td>58 (37.4)</td>
<td>165 (72.1)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>2 (0.9)</td>
<td>1 (0.7)</td>
<td>39 (17.0)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>7 (3.1)</td>
<td>6 (3.9)</td>
<td>40 (17.5)</td>
</tr>
<tr>
<td>Nausea</td>
<td>8 (3.5)</td>
<td>3 (1.9)</td>
<td>41 (17.9)</td>
</tr>
<tr>
<td>Dry skin/pruritus</td>
<td>60 (26.3)</td>
<td>32 (20.7)</td>
<td>67 (29.3)</td>
</tr>
</tbody>
</table>
Safety: comparison to LUX-Lung 3 (cont…)

- No new safety signals were identified in RealGiDo
- Among the 90 patients who received a starting dose of afatinib 40 mg/day and had a dose modification within the first 6 months:
 - 72 (98.6%) experienced an ADR of any grade prior to dose modification, compared with 52 (71.2%) after dose modification
 - Dose reductions also led to decreases in severity of ADRs
Effectiveness

ADRs in patients receiving afatinib 40 mg/day who had a dose reduction within 6 months (n=90)

ADRs by starting dose

- Pre-dose modification
 - Grade 4: 11.0%
 - Grade 3: 57.5%
 - Grade 2: 37.0%
 - Grade 1: 12.3%
- Post-dose modification
 - Grade 4: 1.4%
 - Grade 3: 27.4%
 - Grade 2: 12.3%
 - Grade 1: 20.6%

- Started on ≥40 mg (n=157)
 - Grade 4: 3.2%
 - Grade 3: 24.8%
 - Grade 2: 44.6%
 - Grade 1: 21.0%
- Started on ≤30 mg (n=71)
 - Grade 4: 16.9%
 - Grade 3: 57.8%
 - Grade 2: 21.1%
 - Grade 1: 21.1%
Effectiveness (cont…)

![Graph showing time to treatment failure](image)

<table>
<thead>
<tr>
<th>Group</th>
<th>Median TTF (months), 95% CI</th>
<th>Estimated 12 / 18 month rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥40 mg in first 6 months (n=66)</td>
<td>19.5 (13.4–NR)</td>
<td>70% / 53%</td>
</tr>
<tr>
<td>Reduced to <40 mg within first 6 months (n=91)</td>
<td>17.7 (14.5–21.5)</td>
<td>74% / 50%</td>
</tr>
<tr>
<td>Started on ≤30 mg (n=71)</td>
<td>19.4 (12.9–NR)</td>
<td>66% / 53%</td>
</tr>
</tbody>
</table>

p=0.5431
Effectiveness (cont…)

Time to progression

- ≥40 mg in first 6 months (n=66)
- Reduced to <40 mg within first 6 months (n=91)
- Started on ≤30 mg (n=71)

<table>
<thead>
<tr>
<th></th>
<th>≥40 mg in first 6 months (n=66)</th>
<th>Reduced to <40 mg within first 6 months (n=91)</th>
<th>Started on ≤30 mg (n=71)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median TTP (months), 95% CI</td>
<td>29.0 (17.9–NR)</td>
<td>20.0 (14.7–23.0)</td>
<td>25.9 (17.3–NR)</td>
</tr>
<tr>
<td>Total population</td>
<td>20.8 (19.1–25.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated 12 / 18 month rate</td>
<td>79% / 65%</td>
<td>84% / 60%</td>
<td>86% / 64%</td>
</tr>
</tbody>
</table>
Key findings and conclusions

• Dose adjustments with afatinib in real-world practice reduced the frequency and intensity of ADRs without impacting effectiveness.

• As seen in the LUX-Lung trials, the effectiveness of afatinib (as shown by overall median TTF and TTP of 18.7 and 20.8 months, respectively) was consistent regardless of whether patients had a dose reduction or a modified starting dose.

• These results show that outcomes can be optimised by tailoring afatinib dose based on individual patient characteristics and ADRs.
References

Acknowledgments

This study was funded by Boehringer Ingelheim. The authors were fully responsible for all content and editorial decisions, were involved at all stages of poster development and have approved the final version. Medical writing assistance, supported financially by Boehringer Ingelheim, was provided by Jane Saunders of GeoMed, an Ashfield company, part of UDG Healthcare plc, during the development of this poster.

Corresponding author email address: bahalmos@montefiore.org

These materials are for personal use only and may not be reproduced without written permission of the authors and the appropriate copyright permissions.