I am a Healthcare Professional outside the US and UK

I am a Healthcare Professional outside the US and UK

Click here for international medical scientific information about Oncology for Healthcare Professionals.

I am not a Healthcare Professional and I am outside the US and the UK

I am not a Healthcare Professional and I am outside the US and the UK

Click here for general international information for patients, caregivers and the general public.

Country-specific medical scientific information

Country-specific medical scientific information

Country-specific medical scientific information for Healthcare Professionals.

This site uses cookies to improve your browsing experience. By using this site, you agree to their use. Cookie Information

InOncology.com

Treatment sequencing

Treatment sequencing with EGFR TKIs in EGFR mutation-positive NSCLC

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are currently standard of care for first-line therapy in patients with EGFR mutation-positive non-small cell lung cancer (NSCLC). However, many patients with EGFR mutation-positive disease eventually develop acquired resistance to these therapies, which most commonly occurs via T790M mutation, especially in patients with tumours harbouring exon 19 deletions.1–7

Illustration of the potential for sequential therapy in patients treated with first-line afatinib2‒8

Proportion of patients who could benefit from sequential therapy

*The percentage of patients receiving a second-line therapy is based on data from patients in countries with universal reimbursement policies in LUX-Lung 3 and 6.8

EGFR+, epidermal growth factor receptor mutation positive; NSCLC, non-small cell lung cancer.

The clinical development of third-generation TKIs provides additional treatment options for these patients, but raises questions about the optimal sequence of EGFR TKIs.

Although it is not currently possible to predict which patients will develop the T790M mutation after treatment with a first- or second-generation EGFR TKI, EGFR mutation subtype5‒7 and tumour mutational burden (TMB)9 have been identified as candidate biomarkers.

Patients with the Del19 EGFR mutation, for instance, are significantly more likely to develop T790M than patients with L858R mutations.5‒7

A recent study investigated TMB in 84 patients with EGFR mutation-positive NSCLC who underwent T790M testing at the time of the development of resistance to first- or second-generation EGFR TKIs.10 Median TMB was numerically lower in patients who developed the T790M mutation than those who did not (3.77 vs 4.77 mutations/Mb, respectively).10 These findings suggest that in a future scenario it may be possible to predict which patients are likely to develop the T790M mutation on the basis of an optimal TMB threshold and to tailor therapeutic approach accordingly.

Possible treatment sequences with EGFR TKIs in EGFR mutation-positive NSCLC9

Treatment sequences in EGFR mutation-positive NSCLC

Adapted from Takeda M, Nakagawa K. Int J Mol Sci 2019;20(1):pii: E146.

Figure is only for illustrative purposes; not drawn to scale.

EGFR, epidermal growth factor receptor; TKI, tyrosine kinase inhibitor.

Selecting the optimal EGFR TKI sequence

The various factors that can influence selection of first-line TKI and treatment sequencing have been discussed in a number of recent reviews.

Clinical considerations: in a comprehensive review of EGFR TKI clinical trial data, Professor Vera Hirsh considers the optimal sequencing approach from the perspective of maximising patient outcomes. Read the full review by Professor Hirsh here.11

Patient-related factors: in a Future Oncology review, Professor Nicolas Girard reflects on a number of patient-related (as well as clinical) factors that can affect EGFR TKI sequencing, e.g. presence of brain metastases, drug tolerability and drug–drug interactions. Read the full review by Professor Girard here.12

Molecular considerations: in another recent review, Professor Shinji Kohsaka and colleagues consider cellular heterogeneity within EGFR mutation-positive NSCLC and the potential role that molecular complexity may play in clonal divergence, resistance mechanisms and treatment response. While a targeted approach is possible for homogenous tumours with acquired T790M resistance, options remain less clear for tumours with more heterogeneous acquired resistance mechanisms. In the future, the authors propose the use of molecular tumour dissection to tailor TKI sequencing to the resistance signature of individual tumours, in order to maximise patients’ chemotherapy-free time.13 Read the full review by Professor Kohsaka here.

Tumour clonality and resistance mechanisms in EGFR mutation-positive NSCLC13

Tumour clonality and resistance mechanisms in EGFR mutation-positive NSCLC

Reproduced from Kohsaka S, et al. Future Oncol 2018 [Epub ahead of print].

EGFR, epidermal growth factor receptor; NSCLC, non-small cell lung cancer; TKI, tyrosine kinase inhibitor.

A questionnaire-based study involving 310 clinicians from Germany, the USA, China and Japan has provided some insight into the factors that influence the selection of first-line TKIs in routine patient care.

The majority of clinicians participating in the study agreed that the primary goal of TKI therapy is to extend patients’ overall survival (OS) and improve their quality of life. There was general consensus that the preferred first-line treatment is one that maximises clinically meaningful OS and progression-free survival (PFS), while offering a predictable treatment response and manageable side effects. Over one-third of participating clinicians agreed that there remains a need for more clinical evidence to prompt and guide changes to current practice.14

Rate this

Professor Nicolas Girard discusses treatment sequencing with EGFR TKIs in EGFR mutation-positive NSCLC

GioTag: A real-world study of afatinib followed by osimertinib

GioTag was a global, observational study of sequential therapy with afatinib** followed by osimertinib in routine clinical practice.15 Eligible patients (N=204) had EGFR mutation-positive advanced NSCLC and were treated with first-line afatinib followed by second-line osimertinib on development of the T790M mutation.15 The study reflected the situation in clinical practice more closely than traditional randomised controlled trials as it included patients with an Eastern Cooperative Oncology Group performance status (ECOG PS) ≥2 (15% of patients) and those with brain metastases at baseline (10% of patients).15

You can find out more about the GioTag study by listening to the short podcast, below, or via the study animation and results that follow.

 

Listen to this podcast on our real-world study of first-line afatinib followed by osimertinib.

Rate this

Watch this overview of the GioTag study.

GioTag study results: time on treatment and OS

After a median follow-up of 28.2 months, the median overall time on sequential afatinib and osimertinib treatment was 27.6 months (90% confidence interval [CI]: 25.9–31.3).15 The 2-year OS rate from start of afatinib treatment was 79% in the overall patient population and 84% for patients with an ECOG PS of 0 or 1.15

For more information, view the GioTag study page here and the online publication here.

Time on treatment and OS in patients treated with sequential afatinib and osimertinib in the GioTag study

GioTag study: time on treatment and overall survival

CI, confidence interval; ECOG PS, Eastern Cooperative Oncology Group performance status.

Implications of the GioTag study for clinical practice

The GioTag study provides evidence for sustained clinical benefit of first-line afatinib followed by osimertinib in real-world practice. The findings suggest that patients with EGFR-mutation positive NSCLC who acquire resistance to afatinib via the T790M mutation benefit from sequential targeted therapy with afatinib and osimertinib, delaying their need for chemotherapy.15

Importantly, the clinical benefit with sequential afatinib and osimertinib treatment was consistent across all patient subgroups, with particularly encouraging results in Asian patients (median time on treatment: 46.7 months) and patients with Del19-positive disease (median time on treatment: 30.3 months).15

TKI sequencing and insights from afatinib studies

The video below shows how the landscape for treatment for EGFR mutation-positive NSCLC has evolved, and how insights from afatinib studies can inform treatment sequencing for patients with EGFR mutation-positive NSCLC.

Rate this

Treatment sequencing outcomes in LUX-Lung 3, 6 and 7

The LUX-Lung 3, LUX-Lung 6 and LUX-Lung 7 clinical trials investigated afatinib in the first-line treatment of patients with EGFR mutation-positive advanced NSCLC. Of the 553 patients with common EGFR mutations (Del19 and L858R) who received first-line afatinib in the LUX-Lung 3, 6 and 7 trials and later discontinued treatment, second-line therapy was given in 394 (71%) patients.16 A subanalysis of the LUX-Lung 3 and 6 trials by national reimbursement policy suggests that up to 88% of patients in countries with universal reimbursement policies may receive second-line therapy after discontinuation of first-line afatinib.8

Across the LUX-Lung 3, 6 and 7 trials, median time on second-line treatment was comparable for the Del19 and L858R mutation subgroups.16 Thirty-seven (7%) patients received osimertinib after first-line afatinib (the majority in third-line treatment or beyond), possibly reflecting the recent approval and limited availability of osimertinib at the time of the trials. Median time on osimertinib in any treatment line was 20.2 months (95% CI: 12.8–31.5 months).16 With a median follow-up of >4 years, median OS for osimertinib-treated patients is not yet reached.

In LUX-Lung 7 there was a trend towards improved OS with afatinib versus gefitinib in patients who received a third-generation EGFR TKI (non-estimable [NE] vs 48.3 months; hazard ratio [HR]=0.49; 95% CI: 0.20‒1.19).17

OS in patients who received a subsequent third-generation EGFR TKI following afatinib or gefitinib in LUX-Lung 717

OS in LUX-Lung 7 patients treated with a subsequent third-generation EGFR TKI

CI, confidence interval; NE, non-estimable; OS, overall survival.

Investigating mechanisms of resistance to afatinib: real-world studies

A single-centre, retrospective analysis of 48 Austrian patients with EGFR mutation-positive Stage IV lung adenocarcinoma who had been treated with afatinib for at least 3 months was carried out and 23% of patients had received first-generation EGFR TKIs prior to afatinib.18 In this study, the objective response rate (ORR) in all patients was 90% and the median duration of response was 12.5 months (95% CI: 9–14).18 The EGFR T790M mutation was present in 27/48 (56%) of patients who progressed after initially achieving disease control for ≥3 months with afatinib; the ORR with afatinib in these patients was 93%.18 These 27 patients were then treated with osimertinib, with an ORR of 81%.18 At the time of analysis, osimertinib treatment was ongoing in 11 (41%) patients. Median time on sequential treatment with afatinib and osimertinib was 25.0 months (95% CI: 20–33 months).18 Emergence of the EGFR T790M mutation did not appear to correlate with any baseline characteristics.18

A separate Austrian, single-centre retrospective study evaluated the prevalence of the EGFR T790M mutation at time of afatinib failure, and response to subsequent osimertinib therapy. The predominantly Caucasian population (n=67) had Stage IV EGFR mutation-positive NSCLC and received first-, second-, or third-line afatinib (81%, 15% and 4%, respectively). Both liquid biopsy and tissue rebiopsy, with a highly sensitive droplet digital PCR assay, were used to assess T790M mutation status following progression on afatinib.3

T790M mutation was identified in 73% of patients following failure on afatinib; this proportion was 67% in patients who received afatinib first line.3 All patients with T790M-positive tumours received osimertinib after progression on afatinib. Three-quarters of patients (76%) had an objective response to osimertinib (22% complete; 53% partial), supporting its use after afatinib failure as part of sequential TKI therapy in EGFR T790M-positive NSCLC.3

Of potential interest for future T790M testing protocols, concordance between liquid biopsy and tissue rebiopsy in the study was high (approximately 80% of cases), suggesting a possible role for liquid biopsy as a reliable, less invasive alternative to tissue rebiopsy.3

Afatinib in Japanese patients with EGFR mutation-positive NSCLC

In a real-world study including 128 Japanese patients with advanced EGFR mutation-positive NSCLC, 76 patients received first-line afatinib and 52 received afatinib following a first-generation TKI.4 In patients treated with first-line afatinib, median PFS was 17.8 months (95% CI: 13.7–21.5), median OS was 39.5 months (95% CI: 34.4–NE) and the response rate was 64%.4 Of these patients, 28 had a biopsy following progressive disease and 16 (57%) were T790M positive.4 In patients who received afatinib following a first-generation TKI, median PFS was 8.0 months (95% CI: 4.9–9.5) and the response rate was 24%.4

Did you find this information useful?

References

1

Planchard D, et al. Ann Oncol 2018;29(Suppl. 4):iv192–237.

2

Wu SG, et al. Oncotarget 2016;7(11):12404–13.

3

Hochmair MJ, et al. Target Oncol 2018 [Epub ahead of print].

4

Tanaka H, et al. ASCO 2018 (Abstract e21173).

5

Jenkins S, et al. J Thorac Oncol 2017;12(8):1247–56.

6

Matsuo N, et al. Sci Rep 2016;6:36458.

7

Lau K-S, et al. Poster presented at ESMO 2016 (Poster 1243P).

8

Yang JC, et al. Lancet Oncol 2015;16(2):141–51.

9

Takeda M, Nakagawa K. Int J Mol Sci 2019;20(1):pii: E146.

10

Offin M, et al. Clin Cancer Res 2019;25(3):1063‒69.

11

Hirsch V. Ther Adv Med Oncol 2018;10:1758834017753338.

12

Girard N. Future Oncol 2018;14(11):1117–32.

13

Kohsaka S, et al. Future Oncol 2018 [Epub ahead of print].

14

Wehler T, et al. J Thorac Oncol 2018;13(10):S907.

15

Hochmair MJ, et al. Future Oncol 2018;14(27):2861–7.

16

Sequist LV, et al. Poster presented at ESMO 2017 (Poster 1349P).

17

Corral J, et al. Ann Oncol 2017;28(Suppl. 2): Abstract 93PD.

18

Hochmair MJ, et al. Poster presented at WCLC 2017 (Poster P2.03-025).

*Afatinib is approved in more than 80 markets, including the EU, Japan, Taiwan and Canada under the brand name GIOTRIF®, in the US under the brand name GILOTRIF® and in India under the brand name Xovoltib®; for the full list, please click here. Registration conditions differ internationally; please refer to locally approved prescribing information.

 

Page last updated: March 2019